Answer:
e) about 10 m/s
Explanation:
Acceleration due to gravity is nominally* 9.8 m/s². That means the change in velocity each second is ...
(9.8 m/s²)(1 s) = 9.8 m/s ≈ 10 m/s
_____
* This is the value expected to be used in the solution of many math and physics problems. The standard value of 'g' on Earth is defined as 9.80665 m/s². It varies from place to place and with altitude. At any given place, it may also vary with time as a result of changes in mass distribution within the Earth.
Answer:
1) I_ pendulum = 2.3159 kg m², 2) I_pendulum = 24.683 kg m²
Explanation:
In this exercise we are asked to calculate the moment of inertia of a physical pendulum, let's start by calculating the center of mass of each elements of the pendulum and then the center of mass of the pendulum
Sphere
They indicate the density of the sphere roh = 37800 kg / m³ and its radius
r = 5 cm = 0.05 m
we use the definition of density
ρ = M / V
M = ρ V
the volume of a sphere is
V = 4/3 π r³
we substitute
M = ρ 4/3 π r³
we calculate
M = 37800 4/3 π 0.05³
M = 19,792 kg
Bar
the density is ρ = 32800 kg / m³ and its dimensions are 1 m,
0.8 cm = 0.0008 m and 4cm = 0.04 m
The volume of the bar is
V = l w h
m = ρ l w h
we calculate
m = 32800 (1 0.008 0.04)
m = 10.496 kg
Now we can calculate the center of mass of the pendulum, we use that the center of mass of the sphere is its geometric center, that is, its center and the center of mass of the bar is where the diagonals intersect, in this case it is a very bar. long and narrow, whereby the center of mass is about half the length. It's mass scepter of the pendulum is
r_cm = 1 / M (M r_sphere + m r_bar)
M = 19,792 + 10,496 = 30,288 kg
r_cm = 1 / 30,288 (10,496 0.5 + 19.792 (1 + 0.05))
r_cm = 1 / 30,288 (5,248 + 20,7816)
r_cm = 0.859 m
This is the center of mass of the pendulum.
1) Now we can calculate the moment of inertia with respect to this center of mass, for this we can use the theorem of parallel axes and that the moments of inertia of the bodies are:
Sphere I = 2/5 M r2
Bar I = 1/12 m L2
parallel axes theorem
I = I_cm + m D²
where m is the mass of the body and D is the distance from the body to the axis of rotation
Sphere
m = 19,792 ka
the distance D is
D = 1.05 -0.85
D = 0.2 m
we calculate
I_sphere = 2/5 19.792 0.05 2 + 19.792 0.2 2 = 0.019792 +0.79168
I_sphere = 0.811472 kg m²
Bar
m = 10.496 kg
distance D
D = 0.85 - 0.5
D = 0.35 m
I_bar = 1/12 10.496 0.5 2 + 10.496 0.35 2 = 0.2186 + 1.28576
I_bar = 1.5044 kg m²
The moment of inertia is a scalar quantity whereby the moment of inertia of the body is the sum of the moment of the parts
I_pendulum = I_sphere + I_bar
I_pendulum = 0.811472 +1.5044
I_ pendulum = 2.3159 kg m²
this is the moment of inertia of the pendulum with respect to its center of mass located at r = 0.85 m
2) The moment is requested with respect to the pivot point at r = 0 m
Sphere
D = 1.05 m
I_sphere = 2/5 M r2 + M D2
I_sphere = 2/5 19.792 0.05 2 + 19.792 1.05 2 = 0.019792 +21.82
I_sphere = 21.84 kg m²
Bar
D = 0.5 m
I_bar = 1/12 10.496 0.5 2 + 10.496 0.5 2 = 0.21866 + 2.624
I_bar = 2,84266 kg m 2
The pendulum moment of inertia is
I_pendulum = 21.84 +2.843
I_pendulum = 24.683 kg m²
This moment of inertia is about the turning point at r = 0 m
To solve this problem it is necessary to apply the concepts related to the Period based on gravity and length.
Mathematically this concept can be expressed as
Where,
l = Length
g = Gravitational acceleration
First we will find the period that with the characteristics presented can be given on Mars and then we can find the length of the pendulum at the desired time.
The period on Mars with the given length of 0.99396m and the gravity of the moon (approximately will be
For the second question posed, it would be to find the length so that the period is 2 seconds, that is:
Therefore, we can observe also that the shorter distance would be the period compared to the first result given.
Answer:
a) Angular speed(w) = 2.02rad/sec
b) 73J ( It is Inelastic Collision)
Explanation:
Given:
Mass=45kg
Length on each side = 1.5m side which is hangs vertically from a frictionless pivot at the center of its upper edge.
We need to calculate
(a) What is the angular speed and
(b) To know why the angular momentum conserved but not the linear momentum
CHECK THE ATTACHMENT FOR DETAILED EXPLATION
The initial kinetic energy of the 3.00-kg object traveling at a velocity of 2.00 m/s is 6.00 Joules. When the object's velocity changed to 4.47 m/s, its kinetic energy became 30.02 Joules. Hence, the net work done on the object is 24.02 Joules.
The kinetic energy of any object can be calculated using the formula KE = 0.5 * m * v^2, where m is the object's mass and v is its velocity. For the 3.00-kg object with a velocity of 6.00 i ^ 2 and 2.00 j ^2 m/s, its velocity magnitude would be the square root of (6.00^2 + 2.00^2), which is 2.00 m/s. Plugging the values into the formula, the kinetic energy (a) would be 0.5 * 3.00 * 2.00^2 = 6.00 Joules.
The net work done on an object (b) can be obtained by finding the change in kinetic energy when the object’s velocity changes to 8.00 I and 4.00 j. The final velocity's magnitude would be the square root of (8.00^2 + 4.00^2), which is 4.47 m/s. Hence, the final kinetic energy is 0.5 * 3.00 * 4.47^2 = 30.02 Joules. Therefore, the net work done equals the change in kinetic energy, which is 30.02 - 6.00 = 24.02 Joules.
#SPJ3
Answer:
its 45 over 6
Explanation:the answer is in the question
Answer: Only the melted cube's shape changed.
Explanation: