Talia is on a road trip with some friends. In the first 2 hours, they travel 100 miles. Then they hit traffic and go only 30 miles in the next hour. The last hour of their trip, they drive 75 miles.Calculate the average speed of Talia’s car during the trip. Give your answer to the nearest whole number.

Answers

Answer 1
Answer:

Answer:

51 mph

Explanation:

Answer 2
Answer: Since Speed, V = Distance/Time
Average speed = Total Distance/Total Time

From the given data, Total Distance = 100 + 30 + 75 miles
and Total Time = 2 + 1 + 1 hours

Average Speed = 205/4
Average Speed = 51.25 mph ( or 51mph to the nearest whole number)

Related Questions

Circuit A in a house has a voltage of 218 V and is limited by a 45-A circuit breaker. Circuit B is at 120.0 V and has a 25-A circuit breaker.What is the ratio of the maximum power delivered by circuit A to that delivered by circuit B?
If the population of penguins increased, then this would have a direct effect on the populations of?
At a stop light, a truck traveling at 10.5 m/s passes a car as it starts from rest. The truck travels at constant velocity and the car accelerates at 3 m/s2. How much time does the car take to catch up to the truck?
For a short time the position of a roller-coaster car along its path is defined by the equations r=25 m, θ=(0.3t) rad, and z=(−8 cosθ) m, where t is measured in seconds, Determine the magnitudes of the car's velocity and acceleration when t=4s .
A flat (unbanked) curve on a highway that has a radius of 50 m. A car rounds the curve. The car has mass 4,907 kg. The static coefficient of friction between the curve and the car is 0.35. What is the maximum speed of the car to prevent sliding?

What are 4 ways individuals can influence the government?

Answers

Voting, running, speaking in front of government

When an external magnetic field is applied, what happens to the protons in a sample?A) All protons align with the field.
B) All protons align opposite to the field.
C) Some protons align with the field and some align opposite to it.
D) All protons assume a random orientation.

Answers

On account of external magnetic field, the protons will align with the magnetic field. Hence, option (a) is correct.

The given problem is based on the concept of magnetic field. The region where the magnetic force is experienced is known as magnetic field. Generally, the protons are the charged entities carrying the positive polarity and are one of the major constituents of modern atomic structure.

  • The origin of magnetic field occurs due to charged particles present in a specific space. And the magnetic field is due to the flowing of liquid metal in the outer core of the planet generates electric currents.
  • In the condition when an external field is applied, the majority of protons align to the field because these protons tend to act like small magnets under the effect of this external field.

Thus, we can conclude that on account of external magnetic field, the protons will align with the field.

Learn more about the magnetic field here:

brainly.com/question/14848188

Answer:

Some protons align with the field and some align opposite to it.

Explanation:

Majority align to the field because these protons tend to act like small magnets under the effect of this external field

A 50.0-kg box is being pulled along a horizontal surface by means of a rope that exerts a force of 250 n at an angle of 32.0° above the horizontal. the coefficient of kinetic friction between the box and the surface is 0.350. what is the acceleration of the box?

Answers

The acceleration of the box is 0.81 m/sec².

What is acceleration?

The rate at which an item changes its velocity is known as acceleration, a vector quantity. If an object's velocity is changing, it is acceleration

According to Newton's second law, the resultant of the forces acting on the box is equal to the product between its mass and its acceleration:

\sum F= ma (1)

we are only concerned about the horizontal direction, so there are only two forces acting on the box in this direction:

- the horizontal component of the force exerted by the rope, which is equal to

F_x = F cos\theta = 250*cos 32 = 212 N

the frictional force, acting in the opposite direction, which is equal to

F_f = \mu *mg = 171.7 N

By applying Newton's law (1), we can calculate the acceleration of the

box,

F_x - F_f = ma\na = 0.81 m/sec^2

The acceleration of the box is 0.81 m/sec².

To learn more about acceleration refer to the link:

brainly.com/question/12550364

#SPJ2

A proton and an alpha particle (helium nucleus consisting of two protons and two neutrons) are accelerated from rest across the same potential difference. Assume the proton mass and the neutron mass are roughly the same and neglect any relativistic effect. Compared to the final speed of the proton, the final speed of the alpha particle is?1. less by a factor of 22. less by a factor of √ 23. less by a factor of 44. greater by a factor of 25. the same

Answers

Answer:

option B

Explanation:

we know,

change in energy is equal to

W = (1)/(2)m(v^2 - u^2)

W = (1)/(2)m(v^2 - 0^2)

W = (1)/(2)m v^2

q = (1)/(2)m v^2

proton mass and the neutron mass are roughly the same

so,

q \alpha m v^2

now,

(q_p)/(q_(\alpha)) = (m_p v_p^2)/(m_(\alpha)v_(\alpha)^2)

(q_p)/(q_(\alpha)) = (m_p v_p^2)/(2 m_pv_(\alpha)^2)

we know,

mass of alpha particle is four times mass of the mass of proton. 

mα = 4 m_p

(e)/(2e) = ( v_p^2)/(4 v_(\alpha)^2)

( v_p^2)/(v_(\alpha)^2) = 2

v_(\alpha)^2 =( v_p^2)/(2)

v_(\alpha)=( v_p)/(√(2))

less by a factor of √2

Hence, the correct answer is option B

If the velocity of a pitched ball has a magnitude of 41.0 m/s and the batted ball's velocity is 50.0 m/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.

Answers

The change in momentum is (91 m/s) multiplied by the mass of the ball (which you neglected to mention).
That's exactly the impulse delivered by the bat.

Burns produced by steam at 100°C are much more severe than those produced by the same mass of 100°C water. Calculate the quantity of heat in (Cal or kcal) that must be removed from 6.1 g of 100°C steam to condense it and lower its temperature to 46°C. Specific heat of water = 1.00 kcal/(kg · °C); heat of vaporization = 539 kcal/kg; specific heat of human flesh = 0.83 kcal/(kg · °C).

Answers

Final answer:

To calculate the quantity of heat that must be removed from 6.1 g of 100°C steam, we need to consider both the change in temperature and the phase change from steam to liquid. The specific heat of water is used to calculate the heat required to lower the temperature, while the heat of vaporization is used to calculate the heat required to condense the steam. Adding these two heat values together gives us the total amount of heat that must be removed from the steam, which is approximately 3.61164 kcal.

Explanation:

When steam at 100°C condenses and its temperature is lowered to 46°C, heat must be removed from the steam. To calculate the amount of heat, we can use the specific heat of steam and the latent heat of vaporization. First, we calculate the heat required to lower the temperature of the steam from 100°C to 46°C using the specific heat of water. We then calculate the heat required to condense the steam using the latent heat of vaporization. Finally, we add these two heat values together to obtain the total amount of heat that must be removed from the steam.

Given:

  • Mass of steam = 6.1 g
  • Temperature change = 100°C - 46°C = 54°C
  • Specific heat of water = 1.00 kcal/(kg · °C)
  • Heat of vaporization = 539 kcal/kg


Calculations:

  1. Heat required to lower the temperature of the steam:
    Q1 = mass × specific heat × temperature change
     = 6.1 g × (1.00 kcal/(kg · °C) ÷ 1000 g) × 54°C
  2. Heat required to condense the steam:
    Q2 = mass × heat of vaporization
      = 6.1 g × (539 kcal/kg ÷ 1000 g)
  3. Total heat required:
    Q = Q1 + Q2

Calculation:

  1. Q1 = 0.32874 kcal
  2. Q2 = 3.2829 kcal
  3. Q = Q1 + Q2 = 0.32874 kcal + 3.2829 kcal = 3.61164 kcal


Therefore, the quantity of heat that must be removed from 6.1 g of 100°C steam to condense it and lower its temperature to 46°C is approximately 3.61164 kcal.

Learn more about Heat transfer here:

brainly.com/question/13433948

#SPJ12

Final answer:

To condense and cool 6.1 g of 100°C steam to 46°C, 3.2879 kcal must be removed for condensation, and 0.3304 kcal for cooling, for a total of 3.6183 kcal.

Explanation:

Calculating the Quantity of Heat for Condensation and Cooling

To calculate the quantity of heat that must be removed from 6.1 g of 100°C steam to condense it and lower its temperature to 46°C, we need to consider two processes: condensation and cooling. For condensation, we use the heat of vaporization, and for cooling, we use the specific heat of water.

  1. Calculate the heat released during condensation of steam into water at 100°C:
     Heat = mass × heat of vaporization
     Heat (in kcal) = (6.1 g) × (539 kcal/kg) × (1 kg / 1000 g)
     Heat = 3.2879 kcal
  2. Calculate the heat released when the water cools from 100°C to 46°C:
     Heat = mass × specific heat × change in temperature
     Heat (in kcal) = (6.1 g) × (1.00 kcal/kg°C) × (1 kg / 1000 g) × (100°C - 46°C)
     Heat = 0.3304 kcal

Total heat removed is the sum of the heat from both steps: 3.2879 kcal + 0.3304 kcal = 3.6183 kcal.

Learn more about Heat Transfer here:

brainly.com/question/13433948

#SPJ3