Answer:
a. 0
b. 8.4N/C
c. 5.04N/C
d. 3.6 N/C
e. 1.8N/C
Explanation:
The following data are given
inner cylindrical radius,r=5cm
outer cylindrical radius R=8cm
Charge density,p=7pc/m
radius of rod= 1cm
a. at distance 0.5cm from the center of the rod, this point falls on the rod itself and since the charge spread out on the surface of the rod, there wont be any electric field inside the rod itself
Hence E=0 at 0.5cm
b. at 1.5cm i.e 0.015m
the electric field is expressed as
The direction of the field depends on the charge on the rod
c. at 2.5cm i.e 0.025m
the electric field is expressed as
The direction of the field depends on the charge on the rod
d. at 3.5cm i.e 0.035m this point is still within the rod and the inner cylinder
the electric field is expressed as
The direction of the field depends on the charge on the rod
e. at 7cm which is a point outside the rod and the cylinder, the electric field is
The direction of the field depends on the charge on the rod
Explanation:
It is given that,
Mass of the tennis ball,
Initial speed of tennis ball,
Mass of ball,
Initial speed of ball,
In case of elastic collision, the momentum remains conserved. The momentum equation is given by :
are final speed of tennis ball and the ball respectively.
..............(1)
We know that the coefficient of restitution is equal to 1. It is given by :
.................(2)
On solving equation (1) and (2) to find the values of velocities after collision.
So, the speed of both balls are 5.28 m/s and 3 m/s respectively. Hence, this is the required solution.
Answer:
The recoil velocity of the raft is 1.205 m/s.
Explanation:
given that,
Mass of the swimmer,
Mass of the raft,
Velocity of the swimmer, v = +4.6 m/s
It is mentioned that the swimmer then runs off the raft, the total linear momentum of the swimmer/raft system is conserved. Let V is the recoil velocity of the raft.
V = -1.205 m/s
So, the recoil velocity of the raft is 1.205 m/s. Hence, this is the required solution.
Answer:
The recoil velocity of the raft would be (pointing to the left if the swimmer runs to the right)
Explanation:
The problem states thatthe swimmer has a mass of m=55 kg, and the raft has a mass of M=210 kg. Then, it says that the swimmer runs off the raft with a (final) velocity of v=4.6 m/s relative to the shore.
To analyze it, we take a system of "two particles", wich means that we will consider the swimmer and the raft as a hole system, aisolated from the rest of the world.
Then, from the shore, we can put our reference system and take the initial moment when the swimmer and the raft are stationary. This means that the initial momentum is equal to zero:
Besides, we can use magnitudes instead of vectors because the problem will develope in only one dimension after the initial stationary moment (x direction, positive to the side of the running swimmer, and negative to the side of the recoling raft), this means that we can write the final momentum as
The final momentum is equal to zero due to conservation of momentum (because there are no external forces in the problem, for the system "swimmer-raft"), so the momentum is constant.
Then, from that previous relation we can clear
wich is the recoil velocity of the raft, and it is pointing to the left (we established this when we said that the raft was going to the negative side of the system of reference, and when we put a minus in the raft term inside the momentum equation).
Answer:
The answer is 9 m.
Explanation:
Using the kinematic equation for an object in free fall:
In this case:
Plugging those values into the previous equation:
The negative sign is because the reference taken. If I see everything from the rescuer point of view.
Answer:
a) The total time of the trip is 4.05 h.
b) The average speed of the car is 12.35 mi/h.
c) The total time of the trip is 1.69 h.
Explanation:
Hi there!
a) The equation of traveled distance for a car traveling at constant speed is the following:
x= v · t
Where:
x = traveled distance.
v = velocity.
t = time.
Solving the equation for t, we can find the time it takes to travel a given distance "x" at a velocity "v":
x/v = t
So, the time it takes the car to travel the first half of the distance will be:
t1 = 25.0 mi / 7.00 mi/h
And for the second half of the distance:
t2= 25.0 mi / 52.00 mi / h
The total time will be:
total time = t1 + t2 = 25.0 mi / 7.00 mi/h + 25.0 mi / 52.00 mi / h
total time = 4.05 h
The total time of the trip is 4.05 h.
b) The average speed (a.s) is calculated as the traveled distance (d) divided by the time it takes to travel that distance (t). In this case, the traveled distance is 50 mi and the time is 4.05 h. Then:
a.s = d/t
a.s = 50 mi / 4.05 h
a.s = 12.35 mi/h
The average speed of the car is 12.35 mi/h
c) Let's write the equations of traveled distance for both halves of the trip:
For the first half, you traveled a distance d1 in a time t1 at 7.00 mph:
7.00 mi/h = d1/t1
Solving for d1:
7.00 mi/h · t1 = d1
For the second half, you traveled a distance d2 in a time t2 at 52.00 mph.
52.00 mi/h = d2/t2
52.00 mi/h · t2 = d2
We know that d1 + d2 = 50 mi and that t1 and t2 are equal to t/2 where t is the total time:
d1 + d2 = 50 mi
52.00 mi/h · t/2 + 7.00 mi/h · t/2 = 50 mi
Solving for t:
29.5 mi/h · t = 50 mi
t = 50 mi / 29.5 mi/h
t = 1.69 h
The total time of the trip is 1.69 h.
Answer:149.73 ml
Explanation:
Given
change in volume is given by
The volume of the acetone when it cools to 20.0°C is approximately 142.39 mL.
In order to determine the volume of the acetone when it cools to 20.0°C, we can use the equation for the volume change caused by a temperature change at constant pressure, known as Charles's law. Charles's law states that the volume of a gas is directly proportional to its temperature in Kelvin. We can use the formula V2 = V1 * (T2 / T1) to calculate the volume of the acetone at the lower temperature.
Given that the initial volume of the acetone is 150 mL at a temperature of 34.5°C, we need to convert this temperature to Kelvin by adding 273.15. Therefore, T1 = 34.5°C + 273.15 = 307.65 K.
Since the final temperature is 20.0°C, the final temperature in Kelvin will be T2 = 20.0°C + 273.15 = 293.15 K. We can now plug these values into the equation to find the volume of the acetone at the lower temperature: V2 = 150 mL * (293.15 K / 307.65 K) = 142.39 mL.
#SPJ3