Answer:
A) A negative charge of value Q is induced on sphere B
B) there is an attraction between sphere
C) The charge of sphere A is distributed between the two spheres,
Explanation:
This is an electrostatic problem, in general charges of the same sign attract and repel each other.
with this principle let's analyze the different situations
A) The sphere A that is insulating has a charge on its surface and zero charge is its interior
The conducting sphere B has zero charge, but the sphere A creates an attraction in the electrons, therefore a negative charge of the same value as the charge of the sphere A is induced in the part closest and in the part farther away than one that a positive charge.
A negative charge of value Q is induced on sphere B
B) In this case there is an attraction between sphere A with positive charge and sphere B with negative induced charge
C) When the two spheres come into contact, the charge of sphere A is distributed between the two spheres, therefore each one has a positive charge of value half of the initial charge, as now we have net positive charges in the two spheres charges of the same sign repel each other so the spheres separate
Answer:
465 feet because 93*5 = 465, btw that was 1993 not 1933
Explanation:
Answer:
The add mass = 5.465 kg
Explanation:
Note: Since the spring is the same, the length and Tension are constant.
f ∝ √(1/m)........................ Equation 1 (length and Tension are constant.)
Where f = frequency, m = mass of the spring.
But f = 1/T ..................... Equation 2
Substituting Equation 2 into equation 1.
1/T ∝ √(1/m)
Therefore,
T ∝ √(m)
Therefore,
T₁/√m₁ = k
where k = Constant of proportionality.
T₁/√m₁ = T₂/√m₂ ........................ Equation 3
making m₂ the subject of the equation
m₂ = T₂²(m₁)/T₁²........................... Equation 4
Where T₁ = initial, m₁ = initial mass, T₂ = final period, m₂ = final mass.
Given: T₁ = 1.18 s m₁ = 0.50 kg, T₂ = 2.07 s.
Substituting into equation 4
m₂ = (2.07)²(0.5)/(1.18)²
m₂ = 4.285(1.392)
m₂ = 5.965 kg.
Added mass = m₂ - m₁
Added mass = 5.965 - 0.5
Added mass = 5.465 kg.
Thus the add mass = 5.465 kg
Answer:
Speed of the wind is 48.989 mph
Explanation:
We have given each trip is of 200 miles
So total distance = 200 +200 = 400 miles
Speed of the airplane = 120 mph
Let the speed of the wind = x mph
So the speed of the airplane with wind = 120+x
So time taken by airplane with wind =
Speed of the airplane against the wind = 120 - x
So time taken by the airplane against the wind
Total time is given as t= 4 hour
So
x = 48.989 mph
Answer:
Explanation:
Type Distance Rate Time
Headwind 200 120-r 200/120-r
Tailwind 200 120 - r 200/120 - r
We know the times add to 4, so we write the equation:
200/120−r + 200/120 + r = 4
We multiply both sides by the LCD and simplify to get:
(120−r)(120+r) ((200/120 -r ) + 200/120+r) = 4(120 -r) (120 +r)
200(120−r)+200(120+r)=4(120−r)(120+r)
Factor the 200 and simplify inside the parentheses to find:
200(120−r+120+r)=4(1202−r2)
200(240)=4(1202−r2)
200(60)=120^2−r^2
12,000=14,400−r^2
−2,400= −r^2
49 ≈ r
The speed of the wind is 49mph.
Answer:
Explanation:
Given
Wavelength of incoming light
We know
Energy associated with this frequency
where h=Planck's constant
Energy of one mole of Photon
To calculate the energy of a mole of photons of the emission at 425 nm, use the equation E = hc/λ, where E is the energy, h is Planck's constant, c is the speed of light, and λ is the wavelength. Convert the wavelength to meters, substitute the values into the equation, and calculate to find the energy of a single photon. Multiply this by Avogadro's number to find the energy of a mole of photons.
To calculate the energy of a mole of photons of the emission at 425 nm, we can use the equation E = hc/λ, where E is the energy, h is Planck's constant (6.63 x 10^-34 J·s), c is the speed of light (3.00 x 10^8 m/s), and λ is the wavelength (in meters).
Converting the wavelength to meters, we have 425 nm = 425 x 10^-9 m.
Substituting the values into the equation, we get E = (6.63 x 10^-34 J·s)(3.00 x 10^8 m/s) / (425 x 10^-9 m). Calculating this gives us the energy of a single photon of this emission. To find the energy of a mole of photons, we can multiply this value by Avogadro's number (6.02 x 10^23 photons/mol).
Therefore, the energy of a mole of photons of this emission is (6.63 x 10^-34 J·s)(3.00 x 10^8 m/s) / (425 x 10^-9 m) x (6.02 x 10^23 photons/mol).
#SPJ3
Use 1.602×10−19 C for the magnitude of the charge on an electron.
B)Find the direction of the force that this magnetic field exerts on the ball just as it enters the field.
a-from north to south
b-from south to north
Answer:
A. F=6.65*10^{-10}N
B. south - north
Explanation:
A) We use the Lorentz force
F = qv X B
|F| = qvB
to calculate the magnitude of the force we need the speed of the of the ball.
and by replacing in the formula for the magnitude of the force we have (taking into account the excess of electrons)
B)
b. south - north (by the rigth hand rule)
I hope this is usefull for you
regards
b) TA < TB
c) TA = TB
d) More information is needed
The final temperatures are such that TA > TB.
The specific heat capacity refers to the quantity of heat required to raise the temperature of 1 Kg of a body by 1K. The higher the specific heat capacity of a body, the higher the quantity of heat required to raise the temperature of the body and vice versa.
Hence, if the specific heat of substance A is greater than that of substance B and A and B are at the same initial temperature, when equal amounts of energy are added to them, the final temperature are such that TA > TB.
Learn more: brainly.com/question/1445383
Answer:
For this case, if we try to find the final temperature of A and B, we see that we will obtain an expression in terms of specific heats and masses, from the information given we know the relationship between specific heats, but we don't know the relationship that exists among the masses, then the best option for this case is:
d) More information is needed
(The relation between the masses is not given)
Explanation:
For this case we know the following info:
Where c means specific heat for the substance A and B.
We also know that the initial temperatures for both sustances are equal:
We assume that we don't have melting or vaporization in the 2 substances. So we just have presence of sensible heat given by this formula:
And for this case we know that Both A and B are at the same initial temperature when equal amounts of energy are added to them, so then we have this:
And if we replace the formula for sensible heat we got:
And if we replace for the change of the temperature we got:
And since we have this:
For this case, if we try to find the final temperature of A and B, we see that we will obtain an expression in terms of specific heats and masses, from the information given we know the relationship between specific heats, but we don't know the relationship that exists among the masses, then the best option for this case is:
d) More information is needed
(The relation between the masses is not given)