a) 10.5 m/s
While for observer 1, in motion with the car, the ball falls down straight vertically, according to observer 2, which is at rest, the ball is also moving with a horizontal speed of:
As the ball falls down, it also gains speed along the vertical direction (due to the effect of gravity). The vertical speed is given by
where
is the initial vertical speed
g = 9.8 m/s^2 is the acceleration of gravity
t is the time
Therefore, after t = 1.00 s, the vertical speed is
And so the speed of the ball, as observed by observer 2 at rest, is given by the resultant of the horizontal and vertical speed:
b)
As we discussed in previous part, according to observer 2 the ball is travelling both horizontally and vertically.
The direction of travel of the ball, according to observer 2, is given by
We have to understand in which direction is this angle measured. In fact, the car is moving forward, so has forward direction (we can say it is positive if we take forward as positive direction).
Also, the ball is moving downward, so is negative (assuming upward is the positive direction). This means that the direction of the ball is forward-downward, so the angle above is measured as angle below the positive horizontal direction:
Answer:
True
Explanation:
This is a representation of Gauss law.
Gauss’s law does hold for moving charges, and in this respect Gauss’s law is more general than Coulomb’s law. In words, Gauss’s law states that: The net outward normal electric flux through any closed surface is proportional to the total electric charge enclosed within that closed surface. The law can be expressed mathematically using vector calculus in integral form and differential form, both are equivalent since they are related by the divergence theorem, also called Gauss’s theorem.
B. 17
12
y
C. 6
O D. 12
45
Х
Answer:
I want to say a because you want to subtract and simplify
Answer:
μ = 0.423
Explanation:
To solve this exercise we must use Newton's second law and kinematics together, let's start using expressions of kinematics to find the acceleration of the body
Let's fix a reference system where the x axis is parallel to the inclined plane, but the acceleration is only on this axis
x = v₀ t + ½ a t²
The body starts from rest so its initial speed is zero
a = 2 x / t²
a = 2 0.5 /0.5²
a = 4 m / s²
Taking the acceleration of the body, we use Newton's second law, we take the direction up the plane as positive
X axis
fr - Wₓ = m a (1)
Y Axis
N- = 0
N = W_{y}
We use trigonometry to find the components of the weight
sin 45 = Wₓ / W
cos 45 = W_{y} / W
Wₓ = W sin 45
W_{y} = W cos 45
The out of touch has the expression
fr = μ N
fr = μ W_{y}
We substitute in 1
μ mg cos 45 - mg sin 45 = m a
W_{y} = (a + g sin 45) / g cos 45
μ = a / g cos 45 + 1
We calculate
Acceleration goes down the plane, so it is negative
a = -4 m / s²
μ = 1- 4 / (9.8 cos 45)
μ = 0.423
Answer:
The μ = 0.422
Explanation:
The distance travelled by the mass is equal to:
The sum of forces in y-direction equals zero:
∑Fy = 0
N - (m * g * cosθ) = 0
N - (1 * 9.8 * cos45) = 0
N = 6.93 N
The sum of forces in x-direction is equal to:
∑Fx = ma
(m * g * sinθ) - fk = m * a
(1 * 9.8 * sin45) - fk = 1 * 4
fk = 2.93 N
fk = μ * N
2.93 = μ * 6.93
μ = 0.422
Answer:
v = 14.35 m/s
Explanation:
As we know that crate is placed on rough bed
so here when pickup will take a turn around a circle then in that case the friction force on the crate will provide the necessary centripetal force on the crate
So here we have
here we have
now we know that
here we have
R = 35 m
g = 9.81 m/s/s
now plug in all values in above equation
Answer:
Explained
Explanation:
In order to retain atmosphere a planet needs to have gravity. A gravity sufficient enough to create a dense atmosphere around it, so that it can retain heat coming from sun. Mars has shallow atmosphere as its gravity is only 40% of the Earth's gravity. Venus is somewhat similar to Earth but due to green house effect its temperature is very high. Atmosphere has a huge impact on the planets ability to sustain life. Presence of certain kind gases make the atmosphere poisnous for life. The atmosphere should be such that it allows water to remain in liquid form and maintain an optimum temperature suitable for life.