It is shared electrons.
The following information should be considered:
learn more: brainly.com/question/2514933?referrer=searchResults
Answer:
try electrons i hope this helps!!
Explanation:
Answer:The SI system is based on the number 10 as well as multiples and products of 10. This makes it much easier to use, and so it has been the accepted system in scientific and technical applications. The English system is more complicated as relationships between units of the same quantity aren't uniform.
Explanation:
Answer:
The metric system is an internationally agreed decimal system of measurement while The International System of Units (SI) is the official system of measurement in almost every country in the world
Answer:
4.4×10⁻⁷ Coulomb
Explanation:
V = Voltage = 5.8 kV
d = Potential distance = 2.8 mm = 0.0028 m
A = Area = 0.3×0.08 = 0.024 m²
ε₀ = permittivity constant in a Vacuum= 8.85×10⁻¹² F/m
Magnitude of charge transferred between a carpet and a shoe is 4.4×10⁻⁷ Coulomb.
Earth
B.
Planes
C.
Trains
D.
Blood
E.
Sun
F.
Cars
The object Earth,Sun, and Blood are constantly in motion. The correct option is A, D, and E.
if a body changes its position with respect to its surroundings in a given interval of time, Then the body is said to be in motion
.
Motion is generally classified as follows.:
i) Rectilinear motion.
ii) Circular motion.
iii) Rotational motion.
iv) Periodic motion.
The Earth is continuously in motion because it continuously revolves around The Sun in an elliptical orbit, due to which a year is 365 days. and also The earth rotates about its own axis once a day.
The Sun also revolves around the galactic center of our Milkyway galaxy. and it also rotates about its own axis continuously. so that the sun is also continuously in motion.
The Human blood is continuously in motion Because our blood is continuously circulating whole over the body with the help of our heart. The heart continuously pumps our blood and circulates it inside the human body.
Hence the Earth, Sun, and blood are continuously in motion.
To learn more about Motion click:
#SPJ3
Answer:
Explanation:
The maximum expected measurement error for a pressure gauge measuring 0-10 bar with an inaccuracy of 1% of full-scale reading is 0.1 bar. When the gauge measures 1 bar, the expected inaccuracy is 10%.
The inaccuracy mentioned here is related to the full-scale reading which means the error is calculated based on the top measurement value. The pressure gauge range is 0-10 bar, so the inaccuracy is one percent of this. (a) Thus, the maximum measurement error expected for this instrument is 1.0% of 10 bar i.e., 0.1 bar. (b) If the gauge is measuring a pressure of 1 bar, then the relative error expressed as a percentage would be the absolute error (0.1 bar) divided by the observed reading (1 bar) i.e., 10%. It means, when measuring 1 bar pressure, the expected measurement error is 10%. This is an example of how instrument inaccuracy is properly interpreted and employed when working with various measurements.
#SPJ3
Answer:
θ=π/2
Explanation:
The definition of work is W = → F ⋅ → d = q E c o s θ d W=F→⋅d→=qEcosθd. So if no work is done, the displacement must be in the direction perpendicular to the force ie c o s θ = 0 → θ = π / 2 cosθ=0→θ=π/2
A charged particle can be displaced without any external work done on it in a uniform electric field when its movement is perpendicular to the direction of the electric field.
In a uniform electric field, the electric force is the same in every direction. Therefore, if a charge were to be displaced perpendicular to the original direction of the electric field (i.e., in the y or z direction), it would not encounter any extra electric forces. This means there would be no external work being done on the charge. When a charge is moved perpendicular to an electric field, the field does not affect it, and hence, no work is done by the field.
In other words, a charge can be displaced in this field without any external work being done on it when it is moved in a direction perpendicular to the uniform electric field, either in y-axis or z-axis, assuming the electric field is constant in the x-axis direction.
#SPJ3
Answer:
Explanation:
Gauss' Law should be applied to find the E-field 3.9 cm from the surface of the sphere.
In order to apply Gauss' Law, an imaginary spherical shell (Gaussian surface) should be placed around the original sphere. The exact position of the shell must be 3.9 cm from the surface of the original sphere.
Gauss' Law states that
Here, the integral in the left-hand side is equal to the area of the imaginary surface. After all, the reason behind choosing the imaginary surface a spherical shell is to avoid this integral. The enclosed charge in the right-hand side is equal to the charge of the sphere, -84.0 nC. The radius of the imaginary surface must be 5 + 3.9 = 8.9 cm.
So,