Speed can be calculated if you know the distance that an object travels in one unit of time, therefore the correct answer is option D.
The total distance covered by any object per unit of time is known as speed. It depends only on the magnitude of the moving object.
The unit of speed is a meter/second. The generally considered unit for speed is a meter per second.
Thus, Speed can be calculated if you know the distance that an object travels in one unit of time, therefore the correct answer is option D.
Learn more about speed from here, refer to the link;
#SPJ2
Answer:
D.Speed
Explanation:
The speed of an object is the distance the object travels in one unit of time.
Answer:
v=9.6 km/s
Explanation:
Given that
The mass of the car = m
The mass of the truck = 4 m
The velocity of the truck ,u= 12 km/s
The final velocity when they stick = v
If there is no any external force on the system then the total linear momentum of the system will be conserve.
Pi = Pf
m x 0 + 4 m x 12 = (m + 4 m) x v
0 + 48 m = 5 m v
5 v = 48
v=9.6 km/s
Therefore the final velocity will be 9.6 km/s.
Answer:
Explanation:
Let the bigger crate be in touch with the ground which is friction less. In the first case both m₁ and m₂ will move with common acceleration because m₁ is not sliding over m₂.
1 ) Common acceleration a = force / total mass
= 234 / ( 25 +91 )
= 2.017 m s⁻².
2 ) Force on m₁ accelerating it , which is nothing but friction force on it by m₂
= mass x acceleration
= 25 x 2.017
= 50.425 N
The same force will be applied by m₁ on m₂ as friction force which will act in opposite direction.
3 ) Maximum friction force that is possible between m₁ and m₂
= μ_s m₁g
= .79 x 25 x 9.8
= 193.55 N
Acceleration of m₁
= 193 .55 / 25
= 7.742 m s⁻²
This is the common acceleration in case of maximum tension required
So tension in rope
= ( 25 +91 ) x 7.742
= 898 N
4 ) In case of upper crate sliding on m₂ , maximum friction force on m₁
= μ_k m₁g
= .62 x 25 x 9.8
= 151.9 N
Acceleration of m₁
= 151.9 / 25
= 6.076 m s⁻².
Answer:
Electronic data interchange
Answer:
Explanation:
D its incorrect in edge
Answer:
D
Explanation:
The particles will move side to side over large areas
The force of gravity that the space shuttle experiences is 9.8 x 10^5 Newtons.
To calculate the force of gravity that the space shuttle experiences, we can use the equation F = mg, where F represents the force of gravity, m is the mass of the object, and g is the acceleration due to gravity (approximately 9.8 m/s² on Earth). In this case, the mass of the space shuttle is given as 1.0 x 10^5 kg. However, we need to convert the altitude of the shuttle into meters, so 200.0 km becomes 200,000 meters.
Now we can calculate the force of gravity:
F = (1.0 x 10^5 kg)(9.8 m/s²)
F = 9.8 x 10^5 N
Therefore, the space shuttle experiences a force of gravity of 9.8 x 10^5 Newtons.
#SPJ3
Answer:
90 m
Explanation:
There are two unknowns: the amount of time the squirrel spent running, and the length of the race. Let's call these t and x, respectively.
The average velocity is the total distance divided by the total time.
5.0 m/s = x / (t + 3.0)
The total distance is the time she spent running times the speed she ran at.
x = (6.0 m/s) t
Substitute and solve:
5 = 6t / (t + 3)
5 (t + 3) = 6t
5t + 15 = 6t
t = 15
She ran for 15 seconds (not including the 3 seconds she stopped). So the length of the race is:
x = (6.0 m/s) (15 s)
x = 90 m