Answer:
Br,Ga,Cl?
Explanation:
b)this base ionizes slightly in a aqueous solution
c)this is a strong base
d)an aqueous solution of this base would be acidic
I'm thinking b. help and i'll give medal. Thank you
B.1,000
C.10,000
D.100,000
Answer:
Different types of hot or cold items can be stored in a thermos and power cannot enter or exit the system when the thermos lid is tightly closed
Explanation:
Closed systems are those that do not interact or do not exchange energy with the environment that surrounds them, that is why internal temperatures and conditions are maintained.
The human body is an open system, that is, it would be the opposite of the thermos since we constantly exchange energy with the environment through sweating, emission of gases, urine, feces, and the ingestion of food.
Thermoses are systems specially created to maintain a medium, it will be maintained if its lid is hermetically closed to prevent heat leakage or entry in situations of cold fluids.
B. solvent
C. solution
D. mixture
Answer is: A. solute .
Solvation is the interaction of solvent (in this example water) with molecules or ions (in this example carbon dioxide)) in a solute.
Solvent (usually a liquid, but can also be a solid or a gas) is a substance that dissolves a solute (dissolved in the solvent).
Solvent is always the same state of matter as the solution. In this example, soft drink is a liquid, so water is a solvent.
b) What is the volume of a unit cell?
c) What is the mass of a unit cell?
d) Calculate the approximate atomic mass of the element.
In the given fcc element, a. the number of atoms is 4. b. The volume of a unit cell is . c. Mass of unit cell is
. d. The approximate atomic mass of the element is 80.7 amu.
The volume of cube =
The volume of unit cell =
The volume of unit cell =
Mass =
Mass of unit cell =
Mass of unit cell = .
Mass of 1 carbon atom =
Mass of 1 carbon atom =
Mass of 1 carbon atom = 1.992 grams.
atomic mass unit per gram can be given as;
amu/gram =
amu/gram = amu/gram
1 gram = amu
1 amu = 1.661 gram.
The average atomic mass = mass of unit cell amu\gram
= .
1 amu/ 1.661
gram.
= 80.7 amu.
In the given fcc element, a. the number of atoms is 4. b. The volume of a unit cell is . c. Mass of unit cell is
. d. The approximate atomic mass of the element is 80.7 amu.
For more information about the face-centered cubic lattice, refer to the link:
A face centered cubic lattice consists of 4 atoms. The volume of the unit cell is 9.22 x 10^-23 cm^3 and the mass is 1.34 x 10^-23 g. The approximate atomic mass of the element is 2.02 amu.
The element is said to crystallize in a face centered cubic lattice. This implies that there is one atom at each corner of the cube (8 corners for a total of 1 atom, since each corner atom is shared among 8 adjacent cubes). There is also one atom on each face of the cube (6 faces for a total of 3 atoms, since each face atom is shared among 2 adjacent cubes). Thus, a total of 4 atoms are present in each unit cell. (a)
The volume of a unit cell (edges for a cube) can be calculated by the formula 'volume = side^3', where side in this case is 4.52 x 10-8cm. Hence, the volume equals (4.52 x 10^-8cm)^3 = 9.22 x 10^-23cm^3. (b)
The density of the substance is given as 1.45g/cm^3. The formula for density is 'mass/volume' which implies that mass can be calculated as 'density x volume'. Hence, the mass of the unit cell is (1.45g/cm^3) x (9.22 x 10^-23 cm^3) = 1.34 x 10^-23 g.(c)
The atomic weight of the element can then be calculated by taking this overall mass and dividing by the number of atoms in a unit cell (4). So, the atomic weight is (1.34 x 10^-23 g) / 4 = 3.35 x 10^-24 g. But atomic weights are usually given in atomic mass units (amu), not grams, and 1 amu = 1.66 x 10^-24 g. Therefore, we have an atomic weight of (3.35 x 10^-24 g) / (1.66 x 10^-24 g/amu) = approximately 2.02 amu. (d)
#SPJ2