Nonpolar covalent bonds form when two atoms of the same element or different elements share electrons equally, resulting in a balanced charge distribution. Examples include Methane (CH4) and molecular oxygen (O2). Another case is the CO2 molecule, which is nonpolar because its polar bond moments cancel out.
This leads to a balanced distribution of charges in the molecule, making it nonpolar. Methane, for instance, consists of a carbon atom that shares four electrons equally with four hydrogen atoms, resulting in a bond where the difference in electronegativity between the carbon and hydrogen atoms is minimal.
Another case is CO₂ where the molecule, though consisting of polar bonds, is overall nonpolar because the geometric layout of the molecule allows for the bond moments to cancel each other out, hence no region of the molecule is more positive or negative than any other. Considering the geometry of the molecule is essential when determining the polarity of a molecule with more than one bond.
#SPJ6
As you have not provided the options, still we can figure out the answer by understanding the key difference between saturated and unsaturated hydrocarbons.
SATURATED HYDROCARBONS are those hydrocarbons which only consist of a carbon carbon single bonds. All the bonds are sigma there are no pi bonds at all. Examples are shown below.
While, UNSATURATED HYDROCARBONS are those hydrocarbons which may contain either a double bond or triple bonds or both of them between the carbon atoms as shown below.
A saturated hydrocarbon has only single bonds, like methane (CH4), while an unsaturated hydrocarbon contains double or triple bonds, like ethene (C2H4).
To categorize a hydrocarbon as saturated or unsaturated, we need to look at the types of bonds it has. A saturated hydrocarbon, such as alkanes, has only single bonds between carbon atoms. For example, methane is a saturated hydrocarbon because it's formula, CH4, indicates only single bonds. On the other hand, an unsaturated hydrocarbon, such as alkenes and alkynes, contains double or triple bonds. An example of an unsaturated hydrocarbon is ethene (C2H4), an alkene which consists of a double bond between the two carbon atoms.
#SPJ6
To determine how much of a 144g sample of carbon-14 will remain after 1.719 x 10^4 years, you can use the formula for exponential decay:
\[N(t) = N_0 \cdot \left(\frac{1}{2}\right)^{\frac{t}{T}}\]
Where:
- \(N(t)\) is the remaining amount after time \(t\).
- \(N_0\) is the initial amount.
- \(t\) is the time that has passed.
- \(T\) is the half-life.
In this case, \(N_0\) is 144g, \(t\) is 1.719 x 10^4 years, and \(T\) is the half-life of carbon-14, which is 5,730 years.
Plug these values into the formula:
\[N(t) = 144g \cdot \left(\frac{1}{2}\right)^{\frac{1.719 \times 10^4\text{ years}}{5,730\text{ years}}}\]
Now, calculate:
\[N(t) = 144g \cdot \left(\frac{1}{2}\right)^{\frac{3}{2}}\]
\[N(t) = 144g \cdot \left(\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}\right)\]
\[N(t) = 144g \cdot \frac{1}{8}\]
Now, multiply 144g by 1/8 to find the remaining amount:
\[N(t) = \frac{144g}{8} = 18g\]
So, after 1.719 x 10^4 years, only 18g of the 144g sample of carbon-14 will remain.
B. all organisms need water to transport water into their cells
C.all organisms need water as an energy source
D.all organisms live in water
All organisms need water to transport chemicals into their cells.
Answer:
All organisms need water to transport chemicals into their cells.
Explanation:
Answer:
92.1
Explanation:
1.57 * 58.69
B. use a scale and record the weight in CM.
C.use a beaker with water and record the weight in CM.
D. use a scale and record the weight in N.
Answer:
use a scale and record the weight in N.
Explanation: