Answer all three parts and show work.
bigmama36 avatar

Answers

Answer 1
Answer:

The distance for both Parts A and B are given in the question.

A balloon drifts 140m toward the west in 45s.

The wind suddenly changes and the balloon flies 90m toward the east in the next 25s.

To find the total distance, we can just add.

140 + 90 = 230m

Best of Luck!


Related Questions

A 50 kg child on a skateboard experiences a 75-N force as shown.What is the expected acceleration of the child? F = 75 N 7 . A. 0.67 m/s2 B. 1.50 m/s2 C. 6.70 m/s2 D. 25.0 m/s2
A 5-kg moving at 6 m/s collided with a 1-kg ball at rest. The ball bounce off each other and the second ball moves in the same direction as the first ball at 10 m/sec. What is the velocity of the first ball after the collision?
A spinning wheel on a fireworks display is initially rotating in a counterclockwise direction. The wheel has an angular acceleration of -4.46 rad/s2. Because of this acceleration, the angular velocity of the wheel changes from its initial value to a final value of -31.4 rad/s. While this change occurs, the angular displacement of the wheel is zero. (Note the similarity to that of a ball being thrown vertically upward, coming to a momentary halt, and then falling downward to its initial position.) Find the time required for the change in the angular velocity to occur.
Is the magnet in a compass a permanent magnet or an electromagnet?
What is the velocity at discharge if the nozzle of a hose measures 68 psi? 100.25 ft./sec 10.25 ft./sec 125.2 ft./sec 11.93 ft./sec

Calculate the slope of the 25-coil line and the 50-coil line to determine the average number of paper clips that a 1 V battery would pick up.

Answers

Answer:

For 25-turn electromagnet, Number of clips = 4.1

For 50-turn electromagnet number of clips = 9.6

Explanation:

To calculate the slope of the 25-coil line and the 50-coil line to determine the average number of paper clips that a 1 V battery would pick up.

Hence;

Using the equations gotten from the graph in the previous question and 1.0 V as the value for x, we get

For 25-turn electromagnet y = 3.663x * 0.5

(rounded to one decimal place) Number of clips = 4.1

For 50-turn electromagnet y = 7.133x 2.5

(rounded to one decimal place) Number of clips = 9.6

Professional baseball pitchers deliver pitches that can reach the blazing speed of 100 mph (miles per hour). A local team has drafted an up-and-coming, left-handed pitcher who can consistently pitch at 42.91 m/s (96.00 mph) . Assuming a pitched ball has a mass of 0.1434 kg and has this speed just before a batter makes contact with it, how much kinetic energy does the ball have?

Answers

Answer: 132.02 J

Explanation:

By definition, the kinetic energy is written as follows:

KE = 1/2 m v²

In our question, we know from the question, the following information:

m = 0.1434 Kg

v= 42.91 m/s

Replacing in the equation for KE, we have:

KE = 1/2 . 0.1434 Kg. (42.91)² m²/s² ⇒ KE = 132.02 N. m = 132.02 J

If a pressure gauge measure an increase in 3×10^(5)Pa on an area of 0.7 m^2, calculate the increase in the force applied to the area?​

Answers

Answer:210000N

Explanation:

Pressure=3x10^5pa

area=0.7m^2

Force = pressure x area

Force=3x10^5x0.7

Force=210000N

Do you think a baseball curves better at the top of a high mountain or down on a flat plain

Answers

The baseball curves better at a flatplain due to contacting with air.

What is a baseball curve?

A curveball is a breaking pitch with more movement than most other pitches. It is thrown slower and with more overall break than a slider and is used to throw hitters off balance.

On a flat plain, a baseball will curve down better. This is due to the curving being caused by the ball contacting air and being pushed in a specificdirection.

The spin, speed, and location of the ball's stitches in relation to the air will all influence how it changes direction when pushed against.

Consider throwing a baseball in a vacuum where there is no air. Because there is no air to push on the ball, it will not curve at all.

Thus, a flat plain area will be better for baseball curve.

For more details regarding curveball, visit:

brainly.com/question/8831444

#SPJ2

A baseball will curve better down on a flat plain.In view of the fact that the curving is caused by the ball contacting the air and pushing the ball in a particular direction.

A 10 kg block moving at 10 m/s in a direction 45 degrees above the horizontal. When it has fallen to a point that is 10 m below the initial point measured vertically (without air friction), the block's kinetic energy is closest to

Answers

The block's kinetic energy is closest to 1500 Joules.

Kinetic energy :

The energy is always conserved.

So that, the total kinetic energy will be sum of initial potential energy and kinetic energy during falling.

Given that, mass(m)=10kg, v=10m/s, h=10m,g=10m/s^2

              K.E=(1/2)mv^2 + mgh

              K.E=(1/2)*10*100 + (10*10*10)

              K.E=500 + 1000=1500Joule

The  block's kinetic energy is closest to 1500 Joules.

Learn more about the kinetic energy here:

brainly.com/question/25959744

Answer:

Kinetic energy = 1500 J

Explanation:

The computation of the block's kinetic energy is shown below:

As we know that

Conservation of energy is

PE_i + KE_i = PE_f + KE_f

where,

Initial Potential energy = PE_i = m gh = 10kg× 10m/s^2 × 10m = 1000 J

Initial Kinetic energy = KE_i = (0.5) m V^2 = (0.5) (10 kg) (10 m/s)^2 = 500 J

Final potential energy = PE_f = mgh = 0      

As h = 0 which is at reference line

So

PE_i + KE_i = PE_f + KE_f

Now put these valeus to the above formulas

1000 J + 500 J = 0 + KE_f

After solving this

Kinetic energy = 1500 J

The minimum charge on any object cannot be less than​

Answers

Answer:

1.6 x 10^{-19} Coulombs

Explanation:

In Physics, the standard unit of measurement of a charge is Coulombs and it's denoted by C. Also, the symbol for denoting a charge is Q.

In Chemistry, electrons can be defined as subatomic particles that are negatively charged and as such has a magnitude of -1.

The minimum charge on any object such as an electron cannot be less than​ 1.6 x 10^{-19} Coulombs and it's usually referred to as the fundamental unit of charge.

Other Questions