Answer:
2.744 difference
Explanation:
Use Pe=mgh
So when the soup is at a height of 1.2m, its Pe is (.35kg)(9.8m/)(1.2m)=4.116
when the soup is at a height of .40m, its Pe is (.35kg)(9.8m/)(.40m)=1.372
So youre looking at a 2.744 difference in pe
B.) How much work is needed to move them far apart?
Answer:
Explanation:
A ) The spheres are non conducting , charge will not move on the surface so neutralization of charge by + ve and - ve charge is not possible. Charges will remain intact on them . The electric field inside them will be zero . Electric field outside shell will not be spherically symmetrical . Lines of force will emanate from the surface of positively charged shell outwardly oriented and end at negatively charged shell .
B )
distance between the centres of spherical shell
= 2 a
potential energy of charges
= k q₁ x q₂ / R
= k x - Q x Q / ( 2a )
= - k Q²/ 2a
So work needed to separate them to infinity will be equal to
= k Q²/ 2a
Answer:
Explanation:
information we have:
mass:
lenght:
frequency:
time:
and from the information we have we can calculate the angular velocity . which is defined as
----------------------------
Now, to calculate the torque
We use the formula
where is the moment of inertia and is the angular acceleration
moment of inertia of a uniform rod about the end of it:
substituting known values:
for the torque we also need the acceleration which is defined as:
susbtituting known values:
and finally we substitute and into the torque equation :
To calculate the torque, we need to use the formula: Torque = Moment of Inertia * Angular Acceleration. By approximating the bat as a uniform rod and using its length and mass, we can find the moment of inertia. Then, using the given angular velocity, we can calculate the angular acceleration. Finally, we can determine the torque by multiplying the moment of inertia by the angular acceleration.
To compute the torque the player applies to one end of the bat, we need to use the formula:
Torque = Moment of Inertia * Angular Acceleration
Given that the bat is approximated as a uniform rod and we know its length and mass, we can calculate the moment of inertia. Then, using the given angular velocity, we can compute the angular acceleration. Finally, we can find the torque by multiplying the moment of inertia by the angular acceleration.
#SPJ3
Hey there!
The pressure under a liquid column can be , calculated using the following formula :
P = p x g x h
P atm = 1.013 x 10⁵ Pa
g = 9.8 m/s²
h = ?
h = P / ( p x g ) =
h= ( 1.013 x 10⁵ Pa ) / ( 900 x 9.8 ) =
h = ( 1.013 x 10⁵ ) / ( 8820 ) =
h = 11.48 m ≈ 11.50 m
Hope this helps!
Answer:
Explanation:
The wavelength of the photons emitted due to an atomic electron transition in a hydrogen atom, is given by the Rydberg formula:
Here is the Rydberg constant for hydrogen and are the lower and higher quantum number for the energy levels of the atomic electron transition, respectively. Replacing the given values and solving for
The final speed at the bottom of the incline can be calculated using the conservation of energy principle. There is no work done against friction as the object is moving on a frictionless surface. The speed does not change when the spring pushes it back towards the base of the incline due to lack of friction and it moves to a certain height given the angle of the incline and the initial speed.
#SPJ12
Answer:
Explained
Explanation:
In order to retain atmosphere a planet needs to have gravity. A gravity sufficient enough to create a dense atmosphere around it, so that it can retain heat coming from sun. Mars has shallow atmosphere as its gravity is only 40% of the Earth's gravity. Venus is somewhat similar to Earth but due to green house effect its temperature is very high. Atmosphere has a huge impact on the planets ability to sustain life. Presence of certain kind gases make the atmosphere poisnous for life. The atmosphere should be such that it allows water to remain in liquid form and maintain an optimum temperature suitable for life.