(a) The acceleration of the bird is . The negative sign indicated the opposite direction of motion. (b) The final speed is .
Given:
Initial speed,
Final speed,
Time,
The acceleration can be computed from the velocities and time. The standard unit of acceleration is a meter per second square.
(a)
The acceleration is computed as:
Hence, the acceleration of the bird is . The negative sign indicated the opposite direction of motion.
(b)
The final speed as the given time can be computed from the first equation of motion. The first equation of motion gives the relation between final and initial speed, acceleration, and time.
The final speed at time 1.2 seconds is equal to:
Hence, the final speed is .
To learn more about Acceleration, here:
#SPJ12
Answer:
a) W = 25.872 J
b) - 35.28 J
c) - 9.408
Explanation:
a) The amount of work done by the force of gravity on the ball = Change in potential energy between the two vertical points = - mg (H₂ - H₁)
F = - mg (gravity is acting downwards)
F = - 0.6 × 9.8 = - 5.88 N
(H₂ - H₁) = (1.6 - 6) = - 4.4 m
W = (-5.88)(-4.4) = 25.872 J
b) Gravitational-potential energy of the ball when it was released relative to the ground = (- mg) H₁ = (- 0.6 × 9.8) × 6 = - 35.28 J
c) Gravitational-potential energy of the ball when it is caught relative to the ground = (-mg)(H₂) = -0.6 × 9.8 × 1.6 = - 9.408 J
Given :
∅ = 60⁰
u = 4 m/s
g = 10m/s²
to find :
T = ?
Solution :
as per formula,
now put the value :
as we know
therefore,
as we solve this we get,
that's t = 0.69 sec
0.8 seconds
Explanation:
time of flight = 2u/g
u=4m/s
g=10
= 8/10
= 0.8 sec
just a trial...not sure!!!
The energy stored in the body in a rest state is called potential energy.
There are two types of mechanical energy. The mechanical energy is consist of the following:-
According to the question, the solution is:-
The formula we used is
After putting the value the equation is stated as follows:-
Hence the is equal to:-
m
The spring compressed in 0.81m
For more information, refer to the link:-
Answer:
x = 0.81 m
Explanation:
given,
spring constant, k = 769 N/m
Potential energy of the spring = 250 J
distance of spring compression = ?
using conservation of energy
potential energy will equal to the spring energy
x² = 0.650
x = 0.81 m
Hence, the spring is compressed to 0.81 m
Answer:
Explanation:
If the sun considered as x=0 on the axis to put the center of the mass as a:
solve to r1
Now convert to coordinates centered on the center of mass. call the new coordinates x' and y' (we won't need y'). Now since in the sun centered coordinates the angular momentum was
where T = orbital period
then L'(x',y') = L(x) by conservation of angular momentum. So that means
Since
then
In a two-body system such as the Sun-Saturn system, both bodies orbit around their mutual center of mass, or barycenter. Given the Sun's significantly larger mass, this barycenter is near the center of the Sun, and hence the Sun's change in velocity relative to the center of mass of the system as Saturn completes half an orbit is effectively zero.
The problem here is asking for the change in velocity of the Sun relative to the center of mass of the Sun-Saturn system as Saturn completes half an orbit. This is a situation involving orbital physics and center of mass systems.
However, in an isolated two-body orbit system like this, the center of mass does not change velocity - it would remain constant, not unless acted upon by an outside force, which the problem instructs us to ignore.
Saturn and the Sun both orbit around their common center of mass (their barycenter). Given that the Sun is immensely more massive than Saturn, this center of mass is located very close to the center of the Sun.
So, while the Sun does indeed move a little due to Saturn's influence, the change in velocity of Sun relative to the center of mass of the system during the time Saturn completes half an orbit, for all intents and purposes, is zero.
This is especially true unless the problem specifically mentions that the Sun is initially at rest with respect to the center of mass. In any other case, the relative velocity remains constant and hence the change is zero.
#SPJ3
Answer:
Density = 1.1839 kg/m³
Mass = 227.3088 kg
Specific Gravity = 0.00118746 kg/m³
Explanation:
Room dimensions are 4 m, 6 m & 8 m. Thus, volume = 4 × 6 × 8 = 192 m³
Now, from tables, density of air at 25°C is 1.1839 kg/m³
Now formula for density is;
ρ = mass(m)/volume(v)
Plugging in the relevant values to give;
1.1839 = m/192
m = 227.3088 kg
Formula for specific gravity of air is;
S.G_air = density of air/density of water
From tables, density of water at 25°C is 997 kg/m³
S.G_air = 1.1839/997 = 0.00118746 kg/m³
Answer:
K = 6.02 × 10⁻¹⁹ J
Explanation:
The momentum (p) of an electron is its mass (m) times its speed (v).
p = m × v
v = p / m = (1.05 × 10⁻²⁴ kg.m/s) / 9.11 × 10⁻³¹ kg = 1.15 × 10⁶ m/s
We can find the kinetic energy (K) using the following expression.
K = 1/2 × m × v²
K = 1/2 × 9.11 × 10⁻³¹ kg × (1.15 × 10⁶ m/s)²
K = 6.02 × 10⁻¹⁹ J