Answer:
3.44 rad
Explanation:
The rotational kinetic energy change of the disk is given by ΔK = 1/2I(ω² - ω₀²) where I = rotational inertia of solid sphere = MR²/2 where m = mass of solid disk = 4 kg and R = radius of solid disk = 4 m, ω₀ = initial angular speed of disk = 0 rad/s (since it starts from rest) and ω = final angular speed of disk
Since the kinetic energy is increasing at a rate of 21 J/s, the increase in kinetic energy in 3.3 s is ΔK = 21 J/s × 3.3 s = 69.3 J
So, ΔK = 1/2I(ω² - ω₀²)
Since ω₀ = 0 rad/s
ΔK = 1/2I(ω² - 0)
ΔK = 1/2Iω²
ΔK = 1/2(MR²/2)ω²
ΔK = MR²ω²/4
ω² = (4ΔK/MR²)
ω = √(4ΔK/MR²)
ω = 2√(ΔK/MR²)
Substituting the values of the variables into the equation, we have
ω = 2√(ΔK/MR²)
ω = 2√(69.3 J/( 4 kg × (4 m)²))
ω = 2√(69.3 J/[ 4 kg × 16 m²])
ω = 2√(69.3 J/64 kgm²)
ω = 2√(1.083 J/kgm²)
ω = 2 × 1.041 rad/s
ω = 2.082 rad/s
The angular displacement θ is gotten from
θ = ω₀t + 1/2αt² where ω₀ = initial angular speed = 0 rad/s (since it starts from rest), t = time of rotation = 3.3 s and α = angular acceleration = (ω - ω₀)/t = (2.082 rad/s - 0 rad/s)/3.3 s = 2.082 rad/s ÷ 3.3 s = 0.631 rad/s²
Substituting the values of the variables into the equation, we have
θ = ω₀t + 1/2αt²
θ = 0 rad/s × 3.3 s + 1/2 × 0.631 rad/s² (3.3 s)²
θ = 0 rad + 1/2 × 0.631 rad/s² × 10.89 s²
θ = 1/2 × 6.87159 rad
θ = 3.436 rad
θ ≅ 3.44 rad
Answer:
-4.40
Explanation:
explanation is in attachment
Answer:
Lever, pulley and wheel and axle are the types of machine it's grouped to
Explanation:
The wheel and axle is a simple machine that works by reducing friction in trying to move a load. This is seen in the Tyre of the bicycle
Pulley is a simple machine that creates a mechanical advantage and supports the changing of direction for a rope or cable. This is seen in the chain of the bicycle
Levers attached to the bike's pedals are pushed down to direct force into the pulley system.
Answer:
use google to find answer
Explanation:
69 69 69 69 69 69
Answer:
None of the above
It should be position is changing and acceleration is constant.
Explanation:
Since the velocity is changing, this means the object is moving, so the position must also be changing.
Acceleration is the change in velocity in time, if this change of velocity happens at a constant rate, the acceleration must be constant too.
So, for example, if the velocity were to stay the same (not changing), acceleration would be zero, because there wouldn't be a change in time on the velocity.
So in this case the answer sould be position is changing and acceleration is constant. But this isn't in the options so the correct answer is "None of the above"
In straight line motion, if velocity changes at a constant rate, then the position is changing and the acceleration is constant and non-zero. This is defined under the principles of kinematics and implies that as the velocity alters constantly, the object is in motion, hence its position is changing.
In straight line motion, if the velocity of an object is changing at a constant rate, then its position is changing and its acceleration is constant and non-zero. This condition is defined under the laws of physics, more specifically, under the study of kinematics.
The acceleration is constant because you're considering a situation where velocity is changing at a constant rate. In this case, the change in velocity is the acceleration, which is a constant and not zero. This situation is described by the kinematic equations for constant acceleration.
The position is changing because the object is moving. A change in position over time constitutes motion, and in this case, because the velocity (the rate of change of position) is changing, the object's position cannot be constant.
#SPJ3
Answer:
R = 8.94 10⁻² Ω/m, R_sp / R_total = 44.8
Explanation:
The resistance of a metal cable is
R = ρ L / A
The area of a circle is
A = π R²
The resistivity of copper is
ρ = 1.71 10⁻⁸ ohm / m
Let's calculate
R = 1.71 10⁻⁸ 4.27 / (π (0.51 10⁻³)²)
R = 8.94 10⁻² Ω/m
Each bugle needs two wire, phase and ground
The total wire resistance is
R_total = 2 R
R_total = 17.87 10⁻² Ω
Let's look for the relationship between the resistance of the bugle and the wire
R_sp / R_total = 8 / 17.87 10⁻²
R_sp / R_total = 44.8
The resistance of the speaker wire can be calculated using the formula for the resistance of a wire, taking into account the resistivity of copper, the length and thickness of the wire, and whether a single or pair of wires is used.
The question is asking you to find the minimum resistance of a copper wire given its diameter and length, plus the resistance of the speaker it's connected to. Resistance of a wire is calculated using the formula R=ρL/A, where R is the resistance, ρ (rho) is the resistivity of the material (in this case, copper), L is the length of the wire, and A is the cross-sectional area of the wire.
First, you need to find the area of the 0.51 mm diameter wire. The area (A) of a wire is given by the formula π(d/2)^2 where d is the diameter of the wire. After calculating the area, use the formula R=ρL/A to calculate the resistance. For copper wire at 20°C, ρ is approximately 1.68 × 10^-8 Ω·m. Substituting these values into the formula will give you the resistance of the wire in ohms.
Note: you may need to consider whether you have just a single wire or a pair, since two wires are typically required to connect a speaker. If a pair is used, each wire will carry half the current, which affects the total resistance.
#SPJ12
The magnitude of impulse will be "9.6 Ns".
According to the question,
Mass,
Final velocity,
Initial velocity,
By using Newton's 2nd law of motion, we get
→ Impulse,
By substituting the values, we get
Thus the above answer is right.
Learn more about Impulse here:
Answer:
9.6 Ns
Explanation:
Note: From newton's second law of motion,
Impulse = change in momentum
I = m(v-u).................. Equation 1
Where I = impulse, m = mass of the ball, v = final velocity, u = initial velocity.
Given: m = 2.4 kg, v = 2.5 m/s, u = -1.5 m/s (rebounds)
Substitute into equation 1
I = 2.4[2.5-(-1.5)]
I = 2.4(2.5+1.5)
I = 2.4(4)
I = 9.6 Ns