Answer:
λ = hc/(eV + h)
Explanation:
Let the work function of the metal = ∅
the kinetic energy with which the electrons are ejected = E
the energy of the incident electromagnetic wave = hf
Then, we know that the kinetic energy of the emitted electron will be
E = hf - ∅
because the energy of the incident electromagnetic radiation must exceed the work function for electrons to be ejected.
This means that the energy of the incident e-m wave can be written as
hf = E + ∅
also, we know that the kinetic energy of the emitted electron E = eV
and the work function ∅ = h
we can they combine all equations to give
hf = eV + h
we know that f = c/λ
substituting, we have
hc/λ = eV + h
λ = hc/(eV + h) This is the wavelength of the e-m radiation needed to eject electrons from a metal.
where
λ is the wavelength of the e-m radiation
h is the Planck's constant = 6.63 x 10^-34 m^2 kg/s
c is the speed of e-m radiations in a vacuum = 3 x 10^8 m/s
e is the charge on an electron
V is the voltage potential on the electron
is the threshold frequency of the metal
Answer:
Moment of inertia will be
Explanation:
We have given mass of the person m = 72 kg
Radius r = 0.8 m
Force is given F = 5 N
Angular acceleration
Torque is given by
We know that torque is also given by
, here I is moment of inertia and is angular acceleration
So
Explanation:
The relation between resistance and resistivity is given by :
is resistivity of material
l is length of wire
A is area of cross section of wire
Resistivity of a material is the hidden property. If one wire has 3 times the length of the other, then it doesn't affect its resistivity. Hence, the resistivity of two wires is
Answer:
The no. of electrons is
Solution:
According to the question:
The rate at which the charge is delivered is given by:
Now,
No. of electrons, n can be calculated from the following relation:
Q = ne
where
e = electronic charge =
Thus
Answer:
The correct answer is "21195 N".
Explanation:
The given values are:
Tensile strength,
= 3000 MN/m²
Diameter,
= 3.0 mm
i.e.,
= 3×10⁻³ m
Now,
The maximum load will be:
=
On substituting the values, we get
=
=
=
The maximum load that can be applied to a 3.0 mm diameter steel wire with a tensile strength of 3000 MN/m2 without breaking it is 21,200 Newtons.
The subject of this question revolves around the concept of tensile strength in the field of Physics. The maximum load that can be applied to a wire without it breaking depends on the wire's tensile strength and its cross-sectional area. For a steel wire with a tensile strength of 3000 MN/m2 and a diameter of 3.0 mm, we first need to calculate the cross-sectional area, which can be found using the formula for the area of a circle, A = πr^2, where r is the radius of the wire. Given the diameter is 3.0 mm, the radius will be 1.5 mm or 1.5 x 10^-3 m. So, A = π(1.5 x 10^-3 m)^2 ≈ 7.07 x 10^-6 m^2.
We can then use the tensile strength (σ) to find the maximum load (F) using the equation F = σA. Substituting the given values, we get F = 3000 MN/m^2 * 7.07 x 10^-6 m^2 = 21.2 kN, which is equivalent to 21,200 N. Therefore, the maximum load that can be applied to the wire without breaking it is 21,200 Newtons.
#SPJ3
Thank you!
Answer:
Torques must balance
F1 * X1 = F2 * Y2
or M1 g X1 = M2 g X2
X2 = M1 / M2 * X1 = 130.4 / 62.3 * 10.7
X2 = 22.4 cm
Torque = F1 * X2 =
62.3 gm* 980 cm/sec^2 * 22.4 cm = 137,000 gm cm^2 / sec^2
Normally x cross y will be out of the page
r X F for F1 will be into the page so the torque must be negative