The tension in a string is 15 N, and its linear density is 0.85 kg/m. A wave on the string travels toward the -x direction; it has an amplitude of 3.6 cm and a frequency of 12 Hz. What are the: a. Speed
b. Wavelength of the wave?
c. Write down a mathematical expression for the wave, substituting numbers for the variables

Answers

Answer 1
Answer:

Answer:

(a) The speed of the wave, v is 4.2 m/s

(b) Wavelength of the wave, λ is 0.35 m

(c) mathematical expression of the wave, Y = 0.036sin(5.71πx - 24πt)

Explanation:

Given;

tension on the string, T = 15 N

Linear density, μ = 0.85 kg/m

amplitude of the wave, A = 3.6 cm = 0.036 m

frequency of the wave, f = 12 Hz

(a) The speed of the wave, v is calculated as;

v = \sqrt{(T)/(\mu) } \n\nv = \sqrt{(15)/(0.85) }\n\nv = 4.2 \ m/s

(b) Wavelength of the wave, λ

v = fλ

λ = v / f

λ = 4.2 / 12

λ = 0.35 m

(c) mathematical expression of the wave;

Y = Asin((2\pi x)/(\lambda) -\omega t)\n\nY = Asin((2\pi x)/(\lambda) -2\pi f t)\n\nY = 0.036sin ((2\pi )/(0.35)x -2\pi *12 t)\n\nY = 0.036sin (5.71 \pi x - 24 \pi t)


Related Questions

Where is the density of the material greater, at point B or point C?Explain why.
A current cannot produce a magnetic field. *True or false
A ball having a mass of 500 grams is dropped from a height of 9.00 meters what is its kinetic energy when it hits the ground
Two charged particles are located on the x axis. The first is a charge +Q at x = −a. The second is an unknown charge located at x = +3a. The net electric field these charges produce at the origin has a magnitude of 2keQ/a2 . Explain how many values are possible for the unknown charge and find the possible values.
The gravitational force law, deduced by Newton in the 1660's, is remarkably similar to Coulomb's law. Recall that the universal law of gravitation states that the magnitude of the gravitational force between two masses M1 and M2 separated by a distance R is given by the following equation:________. F = G (M1 x M2) / R2 G = 6.67 x 10-11 Nm2/kg2 a. Calculate the value of the gravitational force between an electron (mass = 9.11 x 10-31 kg) and a proton (mass is 1836 times greater than the mass of an electron) if the two particles are separated by 3.602 nanometers. (1 nanometer or 1 nm = 1 x 10-9 m) F= ______ N b. The force created in the above question is: 1. repulsive 2. attractive

A lunar eclipse can occur during a full moon. Please select the best answer from the choices provided T F

Answers

Answer:

True

Explanation:

Lunar eclipse occurs when the Sun, the Earth and the Moon align in a straight line. The Earth blocks the sunlight falling on moon. In this alignment, the moon is in full phase. During solar eclipse, the moon passes through the shadow of Earth. Lunar eclipse occurs always during full moon phase-when the Earth comes between sun and moon.

Hence, the given statement is true.

True. Lunar eclipses only happen when there is a full moon.

(a) A woman climbing the Washington Monument metabolizes 6.00×102kJ of food energy. If her efficiency is 18.0%, how much heat transfer occurs to the environment to keep her temperature constant? (b) Discuss the amount of heat transfer found in (a). Is it consistent with the fact that you quickly warm up when exercising?

Answers

Answer:

a)

492 kJ

b)

Consistent

Explanation:

Q = Heat stored by woman from food = 600 k J

η = Efficiency of woman = 18% = 0.18

Q' = heat transferred to the environment

heat transferred to the environment is given as

Q' = (1 - η) Q

Inserting the values

Q' = (1 - 0.18) (600)

Q' = 492 kJ

b)

Yes the amount of heat transfer is consistent. The process of sweating produces the heat and keeps the body warm  

Final answer:

A woman climbing the Washington Monument metabolizes food energy with 18% efficiency, meaning 82% of the energy is lost as heat. When we calculate this value, we find that 492 kJ of energy is released as heat, which is consistent with the fact that people quickly warm up when exercising.

Explanation:

The woman climbing the Washington Monument metabolizes 6.00×10² kJ of food energy with an efficiency of 18%. This implies that only 18% of the energy consumed is used for performing work, while the remaining (82%) is lost as heat to the environment.

To calculate the energy lost as heat:

  • Determine the total energy metabolized, which is 6.00 × 10² kJ.
  • Multiply this total energy by the percentage of energy lost as heat (100% - efficiency), which gives: (6.00 × 10² kJ) * (100% - 18%) = 492 kJ.

The released heat of 492 kJ is consistent with the fact that a person quickly warms up when exercising, because a significant portion of the body's metabolic energy is lost as heat due to inefficiencies in converting energy from food into work.

Learn more about Energy Efficiency and Heat Transfer here:

brainly.com/question/18766797

#SPJ3

A thin film soap bubble (n=1.35) is floating in air. If the thickness of the bubble wall is 300nm, which of the following wavelengths of visible light is strongly reflected?

Answers

Answer:

540 nm

Explanation:

According to the question,

The refractive index of the soap bubble, n=1.35.

The thickness of the soap bubble wall is, t=300 nm.

Now, for constructive interference of soap bubble.

2nt=(m+(1)/(2))\lambda.

Now for first order m=1.

Therfore,

\lambda =(4)/(3) tn

Substitute all the variables in the above equation.

\lambda =(4)/(3) (1.35)(300 nm).

Therefore,

\lambda =540 nm.

Therefore the visible light wavelength which is strongly reflected is 540 nm.

Convert this measurement
664.2 km=____cm

Answers

(664.2 km) · (1,000 m/km) · (100 cm/m) =

(664.2 · 1,000 · 100) (km·m·cm/km·m) =

66,420,000 cm

For metric conversion, you can remember this acronym for help:

King Henry died unusually drinking chocolate milk. Which stand for:

Kilo - unit * 1000

Hecto - unit * 100

Deca - unit * 10

Unit - unit * 1

Deci - unit * (1)/(10)

Centi - unit * (1)/(100)

Milli - unit * (1)/(100)

Kilometers and centimeters are five places apart apart, so you move the decimal point in 664.2 to the right five times, which means 664.2 km = 66420000 cm.

To avoid confusion on which direction to move the decimal point, imagine two shapes on each end of a scale. On each end, there is one large shape and one small shape. There has to be one of each on either side for it to balance. For this problem, a kilometer is a larger unit than a centimeter, so this means that the blank space needs to have a number greater than 664.2, or else the scale won't balance. Hope this helped.

A virtual image produced by a lens is always

Answers

The correct answer is:

"located in front of lens"

just took PF test and this was right answer

If the rise and fall of your lungs is considered to be simple harmonic motion, how would you relate the period of the motion to your breathing rate (breaths per minute)? Breaths per minute is an angular frequency. The period is the square root of that value. Breaths per minute is a frequency. The period is the square root of that value. Breaths per minute is a frequency. The period is its reciprocal. Breaths per minute is an angular frequency. The period is its reciprocal.

Answers

Answer:

Breaths per minute is a frequency. The period is its reciprocal.

Explanation:

In simple harmonic motion, a period (T) is the time taken for one point to start in a position and reach that position again, in other words to complete a cycle or lapse. In this case, a period is the time one takes from starting to inspire the air to releasing all of it from the lungs.

In simple harmonic motion, the frequency (f) is how many times a point completes a cycle or lapse in one unity of time (could be one second, one minute, one hour, etc). In this case, the frequency is how many times one breathes in one minute. This is the breathing rate, since it is breathings per minute. Breaths per minute is a frequency.

Period (T) and frequency (f) relate to each other in the following formulae: T=(1)/(f) or f=(1)/(T) .

Therefore, breaths per minute is a frequency, and since it is related to the period, we say the period is reciprocal to it.