Answer:
The force constant of the spring is 735 N/m.
Explanation:
It is given that,
Mass of fruit, m = 1500 g = 1.5 kg
Compression in the scale, x = 0.02 m
We need to find the force constant of the spring on the scale. The force acting on the scale is given by using Hooke's law. So,
Also, F = mg
k is force constant
So, the force constant of the spring is 735 N/m.
Answer:
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 1300 × 1.07
We have the final answer as
Hope this helps you
Answer:
The electric force increases by a factor of 4.
Explanation:
The electric force between two charges and separated a distance d can be calculated using Coulomb's Law:
where is the Coulomb constant.
If the value of each charge is doubled, then we will have a force between them which is:
So the new force is 4 times larger than the original force.
Doubling the charge on each particle increases the electric force between them by a factor of 4.
The force between two charged particles is given by Coulomb's Law, which states that the force is directly proportional to the product of the charges and inversely proportional to the square of the distance between them. So, if we denote the electric force as F, the charges as q1 and q2, and the distance as r, we can write Coulomb's law as F = k* q1*q2/r^2, where k is a constant.
Now if you double the charges (q1 and q2 become 2q1 and 2q2), and use these values in the formula, we get Fnew = k*(2q1) *(2q2)/r^2 = 4 * k*q1*q2/r^2 = 4F.
So, by doubling the charge on each particle, the electric force between them is multiplied by the factor of 4. So, the force increases fourfold.
#SPJ3
Answer:
YES THERE ARE VERY MANY BOOKS THAT YOU CAN BUY OR BORROW FROM YOUR LOCAL LIBRARY, HOPE THIS HELPS! HAVE A GREAT DAY!
Explanation:
Answer:
4.4×10⁻⁷ Coulomb
Explanation:
V = Voltage = 5.8 kV
d = Potential distance = 2.8 mm = 0.0028 m
A = Area = 0.3×0.08 = 0.024 m²
ε₀ = permittivity constant in a Vacuum= 8.85×10⁻¹² F/m
Magnitude of charge transferred between a carpet and a shoe is 4.4×10⁻⁷ Coulomb.