According to the second law of thermodynamics, it is impossible for ____________. According to the second law of thermodynamics, it is impossible for ____________. heat energy to flow from a colder body to a hotter body an ideal heat engine to have the efficiency of 99% an ideal heat engine to have non-zero power. a physical process to yield more energy than what is put in

Answers

Answer 1
Answer:

Answer:

It's impossible for an ideal heat engine to have non-zero power.

Explanation:

Option A is incomplete and so it's possible.

Option B is possible

Option D is related to the first lae and has nothing to do with the second law.

Hence, the correct option is C.

The ideal engine follows a reversible cycle albeit an infinitely slow one. If the work is being done at this infinitely slow rate, the power of such an engine is zero.

We can also stat the second law of thermodynamics in this manner;

It is impossible to construct a cyclical heat engine whose sole effect is the continuous transfer of heat energy from a colder object to a hotter one.

This statement is known as second form or Clausius statement of the second law.

Thus, it is possible to construct a machine in which a heat flow from a colder to a hotter object is accompanied by another process, such as work input.

Answer 2
Answer:

Final answer:

According to the second law of thermodynamics, it is impossible for heat energy to flow from a colder body to a hotter body, for an ideal heat engine to have an efficiency of 99%, and for a physical process to yield more energy than what is put in.

Explanation:

According to the second law of thermodynamics, it is impossible for heat energy to flow from a colder body to a hotter body. This is because heat naturally flows from a region of higher temperature to a region of lower temperature. This principle is what allows us to effectively use heat for various purposes, such as in heat engines.

An ideal heat engine is a theoretical construct used to study the efficiency of engines. The second law of thermodynamics states that no heat engine can have an efficiency of 100%, so it is impossible for an ideal heat engine to have an efficiency of 99%. This is due to the losses in heat transfer and other thermodynamic processes.

The second law of thermodynamics also implies that in any physical process, the total energy cannot increase. It is impossible for a physical process to yield more energy than what is put in. This principle is central to understanding energy conservation and the limitations of energy conversion.

Learn more about Second Law of Thermodynamics here:

brainly.com/question/32826461

#SPJ3


Related Questions

A 62.0 kg skier is moving at 6.90 m/s on a frictionless, horizontal, snow-covered plateau when she encounters a rough patch 4.50 m long. The coefficient of kinetic friction between this patch and her skis is 0.300. After crossing the rough patch and returning to friction-free snow, she skis down an icy, frictionless hill 2.50 m high.How fast is the skier moving when she gets to the bottom ofthe hill?
(a) Determine the electric field strength between two parallel conducting plates to see if it will exceed the breakdown strength for air (3 ? 106 V/m). The plates are separated by2.98 mm and a potential difference of 5575 V is applied. (b) How close together can the plates be with this applied voltage without exceeding the breakdown strength?
A centrifuge is a common laboratory instrument that separates components of differing densities in solution. This is accomplished by spinning a sample around in a circle with a large angular speed. Suppose that after a centrifuge in a medical laboratory is turned off, it continues to rotate with a constant angular deceleration for 10.0s before coming to rest.Part AIf its initial angular speed was 3890rpm , what is the magnitude of its angular deceleration? (|?| in revs/s^2 )Part BHow many revolutions did the centrifuge complete after being turned off?
A 1kg ball is dropped (from rest) 100m onto a spring with spring constant 125N/m. How much does the spring compress?
As an object in motion becomes heavier, its kinetic energy _____. A. increases exponentially B. decreases exponentially C. increases proportionally D. decreases proportionally

Suppose you are pushing on a crate across a floor as shown below. Assume the friction force is 47.0 N. How much time will it take for the crate to reach 6.0 m/s if it started from rest? Assume the weight of the crate is 2058 N. (250 N force applied)(Question is no longer a priority but i’d like to know the answer and how it’s found) pls don’t scam i’m serious man i need to know

Answers

Answer:

6.2 seconds

Explanation:

Using Newton's second law, ∑F=ma, we know the net force acting on the object is Force applied-Force of friction. The net force is 203 N. Newton's second law requires the mass of an object, not the weight force, so we will have to calculate the mass. We know that m*g=weight force,  in this case, solve for the mass and you will get 210 kg. Now that we have the value of the net force and the mass, we can solve for acceleration. (F)/(m)=a=0.967 m/s^2. Now, since we have the acceleration, initial velocity(0 m/s), and the final velocity (6m/s) we will use these to solve for time using the kinematic equation Vf=Vi + at. Plug in the values we know and solve for time and you will get 6.2 seconds

Beverage can is thrown upward and then falls back down to the floor. As usual, a y axis extends upward (positive direction). Which of the following best describes the acceleration of the can during its free flight?a) -9.8 m/s^2, then momentarily zero, then +9.8 m/s^2
b) +9.8 m/s^2 throughout
c) -9.8 m/s^2 throughout
d) zero throughout
e) +9.8 m/s^2, then momentarily zero, then -9.8 m/s^2

Answers

a) -9.8 m/s^2, then momentarily zero, then +9.8 m/s^2
Because free-falling objects are accelerating downwards at a rate of 9.8 m/s/s

A 10 kg block moving at 10 m/s in a direction 45 degrees above the horizontal. When it has fallen to a point that is 10 m below the initial point measured vertically (without air friction), the block's kinetic energy is closest to

Answers

The block's kinetic energy is closest to 1500 Joules.

Kinetic energy :

The energy is always conserved.

So that, the total kinetic energy will be sum of initial potential energy and kinetic energy during falling.

Given that, mass(m)=10kg, v=10m/s, h=10m,g=10m/s^2

              K.E=(1/2)mv^2 + mgh

              K.E=(1/2)*10*100 + (10*10*10)

              K.E=500 + 1000=1500Joule

The  block's kinetic energy is closest to 1500 Joules.

Learn more about the kinetic energy here:

brainly.com/question/25959744

Answer:

Kinetic energy = 1500 J

Explanation:

The computation of the block's kinetic energy is shown below:

As we know that

Conservation of energy is

PE_i + KE_i = PE_f + KE_f

where,

Initial Potential energy = PE_i = m gh = 10kg× 10m/s^2 × 10m = 1000 J

Initial Kinetic energy = KE_i = (0.5) m V^2 = (0.5) (10 kg) (10 m/s)^2 = 500 J

Final potential energy = PE_f = mgh = 0      

As h = 0 which is at reference line

So

PE_i + KE_i = PE_f + KE_f

Now put these valeus to the above formulas

1000 J + 500 J = 0 + KE_f

After solving this

Kinetic energy = 1500 J

While David was riding his bike around the circular cul-de-sac by his house, he wondered if the constant circular motion was having any effect on his tires. What would be the best way for David to investigate this?A.
Measure the circumference of the tire before and after riding.
B.
Measure the total distance traveled on his bike and divide this by how long it took him.
C.
Measure the wear on his treads before and after riding a certain number of laps.
D.
Time how long it takes him to ride 5 laps around his cul-de-sac.

Answers

Answer:

C.

Measure the wear on his treads before and after riding a certain number of laps.

Answer:

Measure the wear on his treads before and after riding a certain number of laps.

Explanation:

By riding in a circular motion the inside of the tire will be in contact with the road more than the outside of the tire. Thus, to see if the constant circular motion had any effect on his tires David should measure the tread depth on both the inside and the outside of the tires before the experiment and measure the inside and the outside of the tires (at the same location on the tires) after the experiment. Then he can compare the tread loss on the inside of the tire to the tread loss on the outside of the tire.

A convex lens is placed on a flat glass plate and illuminated from above with monochromatic red light. When viewed from above, concentric bands of red and dark are observed. What does one observe at the exact center of the lens where the lens and the glass plate are in direct contact?A) a darkspotB) a bright spot thatis some color other than redC) a bright redspotD) a rainbow of color

Answers

Answer:

After passing through the glass plate, the red light disperses and meets at point.

The convex lens has two refracting surfaces, and convex kens is called as converging lens. So, at the exact center of the lens, one observes a Dark spot.

Thus, the correct option is a) one observes a dark spot.

Answer:

The answer is: A) a darkspot

Explanation:

When the red light passes through the glass plate, it is scattered. the convex lens (convergent lens) has two refractive surfaces, therefore, in the center of the lens, a characteristic dark spot would be observed.

A power P is required to do work W in a time interval T. What power is required to do work 3W in a time interval 5T? (a) 3P (b) 5P (c) 3P/5 (a) P (e) 5P/3

Answers

Answer:

(c) 3P/5

Explanation:

The formula to calculate the power is:

P=(W)/(T)

where

W is the work done

T is the time required for the work to be done

In the second part of the problem, we have

Work done: 3W

Time interval: 5T

So the power required is

P=(3W)/(5T)=(3)/(5)(W)/(T)=(3)/(5)P