Answer:
a
b
Explanation:
From the question we are told that
The speed of the airplane is
The angle is
The altitude of the plane is
Generally the y-component of the airplanes velocity is
=>
=>
Generally the displacement traveled by the package in the vertical direction is
=>
Here the negative sign for the distance show that the direction is along the negative y-axis
=>
Solving this using quadratic formula we obtain that
Generally the x-component of the velocity is
=>
=>
Generally the distance travel in the horizontal direction is
=>
=>
Generally the angle of the velocity vector relative to the ground is mathematically represented as
Here is the final velocity of the package along the vertical axis and this is mathematically represented as
=>
=>
and v_x is the final velocity of the package which is equivalent to the initial velocity
So
The negative direction show that it is moving towards the south east direction
Answer:
1.2 s
Explanation:
Given:
v₀ = 8.0 m/s
v = -4.0 m/s
a = -10 m/s²
Find: t
v = at + v₀
(-4.0 m/s) = (-10 m/s²) t + (8.0 m/s)
t = 1.2 s
Answer:
Force,
Explanation:
It is given that,
Length of the room, l = 4 m
breadth of the room, b = 5 m
Height of the room, h = 3 m
Atmospheric pressure,
We know that the force acting per unit area is called pressure exerted. Its formula is given by :
So, the total force on the floor due to the air above the surface is . Hence, this is the required solution.
Answer:
9.93 MPa
Explanation:
Given:
- mass of the man = 68.4 kg
- Deflection dx = 5.2 cm
- thickness of plank t = 2.0 cm
- width of plank w = 13.0 cm
- Length subtended L = 2.0 m
Find:
Shear Modulus of Elasticity S :
S = shear stress / shear strain
Shear stress = F / A
Shear stress = 68.4*9.81 / 0.02*0.13
Shear stress = 258078.4615 Pa
Shear strain = dx / L
Shear Strain = 0.052 / 2
Shear Strain = 0.026
Hence,
S = 258078.4615 / 0.026
S = 9.93 MPa
Answer:
speed when it reaches y = 4.00cm is
v = 14.9 g.m/s
Explanation:
given
q₁=q₂ =2.00 ×10⁻⁶
distance along x = 3.00cm= 3×10⁻²
q₃= 4×10⁻⁶C
mass= 10×10 ⁻³g
distance along y = 4×10⁻²m
r₁ = = = 3.61cm = 0.036m
r₂ = = = 5cm = 0.05m
electric potential V =
change in potential ΔV =
ΔV = , where 2.00μC
ΔV =
ΔV = 2 × 9×10⁹ × 2×10⁻⁶ ×
ΔV= 2.789×10⁵
= ΔV × q₃
ˣ 10×10⁻³ ×v² = 2.789×10⁵× 4 ×10⁻⁶
v² = 223.12 g.m/s
v = 14.9 g.m/s
The speed of the charge q₃ when it starts from rest at y = 2 cm and reaches y = 4 cm is; v = 14.89 m/s
We are given;
Charge 1; q₁ = 2.00 μC = 2 × 10⁻⁶ C
Charge 2; q₂ = 2.00 μC = 2 × 10⁻⁶ C
Distance of charge 1 along x = 3 cm = 3 × 10⁻² m
Distance of charge 2 along x = -3 cm = -3 × 10⁻² m
Charge 3; q₃ = +4.00 μC = 4 × 10⁻⁶ C
mass; m = 0.01 g
distance of charge 3 along y = 4 cm = 4 × 10⁻² m
q₃ starts from rest at y = 2 × 10⁻² m and reaches y = 4 × 10⁻² m.
Thus;
Distance of charge 1 from the initial position of q₃;
r₁ = √((3 × 10⁻²)² + ((2 × 10⁻²)²)
r₁ = 0.0361 m
Distance of charge 2 from the final position of q₃;
r₂ = √((3 × 10⁻²)² + ((4 × 10⁻²)²)
r₂ = 0.05 m
Now, formula for electric potential is;
V = kq/r
Where k = 9 × 10⁹ N.m²/s²
Thus,change in potential is;
ΔV = V₁ - V₂
Now, Net V₁ = 2kq₁/r₁
Net V₂ = 2kq₂/r₂
Thus;
ΔV = 2kq₁/r₁ - 2kq₂/r₂
ΔV = (2 × 9 × 10⁹)[(2 × 10⁻⁶/0.0361) - (2 × 10⁻⁶/0.05)]
ΔV = 277229.92 V
Now, from conservation of energy;
½mv² = q₃ΔV
Thus;
½ × 0.01 × v² = 4 × 10⁻⁶ × 277229.92
v² = 2 × 4 × 10⁻⁶ × 277229.92/0.01
v = √(221.783936)
v = 14.89 m/s
Read more about point charges at;brainly.com/question/13914561
b. 30,000 miles
c. 100,000 miles
gravitational force varies based on 1/r^2
when you're double the distance =10,000 to 20,000, the force is 4 times smaller so on and so forth.
As force is proportional to 1 / {distance squared}, the force will be 1 / 2^2 (i.e. 1/4) of the force at the reference distance (i.e. 1/4 * 600 = 150 lb)
Answer:
option the correct is B
Explanation:
Let's analyze the different options, for a closed system
- an internal reaction changes the system, but does not affect the surrounding environment
- Heat, is a means of transfer that occurs when two bodies are in contact, one of the body can be a closed system since the only thing that happens is thermal transfer, without movement of the system itself. This is the correct result.
- Work implies a movement whereby the system must be mobile, it is not an option
- Pressure change. change in the system, but does not affect the environment
- Mass transfer is not possible in a closed system
After analyzing each option the correct one in B