Answer:
The constant speed of second submarine is 31.16 km/hr
Explanation:
Given that
v₁=20 km/hr ,d₁= 500 Km
v₂=40 km/hr ,d₂=500 km
v₃=30 km/hr, d₃=500 km
v₄=50 km/hr ,d₄=500 km
We know that
Displacement = Velocity x Time
d = v t
Total displacement = Average velocity x Total time
Now by putting the values
So the constant speed of second submarine will be the average speed of first submarine because they have to meet at the same time.
The constant speed of second submarine is 31.16 km/hr
(b) Is the initial position of car A greater than, less than, or equal to the
initial position of car B?
(c) In the time period from t = 0 tot = 1 s, is car A ahead of car B,
behind car B, or at the same position as car B?
a. ) Is the velocity of car A less than the velocity of car B b. the initial position of car A greater than the initial position of car B c. ahead In the time period from t = 0 tot = 1 s, is car A ahead of car B?.
Velocity is the parameter which is different from speed, can be defined as the rate at which the position of the object is changed with respect to time, it is basically speeding the object in a specific direction in a specific rate.
Velocity is a vector quantity which shows both magnitude and direction and The SI unit of velocity is meter per second (ms-1). If there is a change in magnitude or the direction of velocity of a body, then it is said to be accelerating.
Finding the final velocity is simple but few calculations and basic conceptual knowledge are needed.
For more details regarding velocity, visit
#SPJ2
Answer:
a. less than, b. greater than, c. ahead
Explanation:
Answer:
Explanation:
Let the charge on bead A be q nC and the charge on bead B be 28nC - qnC
Force F between them
4.8\times10^{-4} =
=120 x 10⁻⁸ = 9 x q(28 - q ) x 10⁻⁹
133.33 = 28q - q²
q²- 28q +133.33 = 0
It is a quadratic equation , which has two solution
q_A = 21.91 x 10⁻⁹C or q_B = 6.09 x 10⁻⁹ C
Answer
given,
Tension of string is F
velocity is increased and the radius is not changed.
the string makes two complete revolutions every second
consider the centrifugal force acting on the stone
=
now centrifugal force is balanced by tension
T =
From the above expression we can clearly see that tension is directly proportional to velocity and inversely proportional to radius.
When radius is not changing velocity is increasing means tension will also increase in the string.
Answer:
a = 5.53 g , a = -15g
Explanation:
This is an exercise in kinematics.
a) Let's look for the acceleration
as part of rest v₀ = 0
v = v₀ + a t
a = v / t
a = 282 / 5.2
a = 54.23 m / s²
in relation to the acceleration of gravity
a / g = 54.23 / 9.8
a = 5.53 g
b) let's look at the acceleration to stop
va = 0
0 = v₀ -2 a y
a = vi / y
a = 282/2 1
a = 141 m /s²
a / G = 141 / 9.8
a = -15g
Answer:
3.27
Explanation:
Electric Power: This can be defined as the rate at which electric energy is consumed. The unit of power is Watt (W).
Mathematically, electric power is represented as
P = VI ..................................... Equation 1.
Where P = power, V = voltage, I = Current.
For Circuit A,
P₁ = V₁I₁ ................................... Equation 2
Where P₁ = maximum power delivered by circuit A, V₁ = Voltage of circuit A, I₁ = circuit breaker rating of circuit A.
Given: V₁ = 218 V, I₁ = 45 A.
Substituting into equation 2
P₁ = 218×45
P₁ = 9810 W.
For Circuit B,
P₂ = V₂I₂............................. Equation 3
Where P₂ = maximum power delivered by the circuit B, V₂ = voltage of circuit B, I₂ = circuit breaker rating of circuit B
Given: V₂ = 120 V, I₂ = 25 A.
Substitute into equation 3
P₂ = 120(25)
P₂ = 3000 W.
Ratio of maximum power delivered by circuit A to that delivered by circuit B = 9810/3000
= 3.27.
Thus the ratio of maximum power delivered by circuit A to circuit B = 3.27