A ride at an amusement park moves the riders in a circle at a rate of 6.0 m/s. If the radius of the ride is 9.0 meters, what is the acceleration of the ride?4.0 m/s2
0.67 m/s2
0.075 m/s2
54 m/s2

Answers

Answer 1
Answer: 4.0 m/s2


it's 9 squared divided by 6
Answer 2
Answer: the answer is B 4.0 m/s2

Related Questions

A rocket with a mass of 62,000 kg (including fuel) is burning fuel at the rate of 150 kg/s and the speed of the exhaust gases is 6,000 m/s. If the rocket is fired vertically upward from the surface of the Earth, determine its height after 744 kg of its total fuel load has been consumed. Since the mass of fuel consumed is small compared to the total mass of the rocket, you can consider the mass of the rocket to be constant for the time interval of interest.
Dr. John Paul Stapp was a U.S. Air Force officer who studied the effects of extreme acceleration on the human body. On December 10, 1954, Stapp rode a rocket sled, accelerating from rest to a top speed of 282 m/s (1015 km/h) in 5.2 s and was brought jarringly back to rest in only 1 s. Calculate his (a) magnitude of acceleration in his direction of motion and (b) magnitude of acceleration opposite to his direction of motion. Express each in multiples of g (9.80 m/s2) by taking its ratio to the acceleration of gravity. g g
What best describes the bromide ion that forms​
The physics of wind instruments is based on the concept of standing waves. When the player blows into the mouthpiece, the column of air inside the instrument vibrates, and standing waves are produced. Although the acoustics of wind instruments is complicated, a simple description in terms of open and closed tubes can help in understanding the physical phenomena related to these instruments. For example, a flute can be described as an open-open pipe because a flutist covers the mouthpiece of the flute only partially. Meanwhile, a clarinet can be described as an open-closed pipe because the mouthpiece of the clarinet is almost completely closed by the reed.1. Consider a pipe of length 80.0 cm open at both ends. What is the lowest frequency f of the sound wave produced when you blow into the pipe? 2. A hole is now drilled through the side of the pipe and air is blown again into the pipe through the same opening. The fundamental frequency of the sound wave generated in the pipe is now:______.a. the same as before. b. lower than before.c. higher than before.3. If you take the original pipe in Part A and drill a hole at a position half the length of the pipe, what is the fundamental frequency of the sound that can be produced in the pipe?4. What frequencies, in terms of the fundamental frequency of the original pipe in Part A, can you create when blowing air into the pipe that has a hole halfway down its length?4-1. Recall from the discussion in Part B that the standing wave produced in the pipe must have an antinode near the hole. Thus only the harmonics that have an antinode halfway down the pipe will still be present.A. Only the odd multiples of the fundamental frequency.B. Only the even multiples of the fundamental frequency.C. All integer multiples of the fundamental frequency.E. What length of open-closed pipe would you need to achieve the same fundamental frequency as the open pipe discussed in Part A?A. Half the length of the open-open pipe.B. Twice the length of the open-open pipe.C. One-fourth the length of the open-open pipe.D. Four times the length of the open-open pipe.E. The same as the length of the open-open pipe.F. What is the frequency of the first possible harmonic after the fundamental frequency in the open-closed pipe described in Part E?F-1. Recall that possible frequencies of standing waves that can be generated in an open-closed pipe include only odd harmonics. Then the first possible harmonic after the fundamental frequency is the thirdharmonic.
An early model of the atom, proposed by Rutherford after his discovery of the atomic nucleus, had a positive point charge +Ze (the nucleus) at the center of a sphere of radius R with uniformly distributed negative charge −Ze. Z is the atomic number, the number of protons in the nucleus and the number of electrons in the negative sphere. Show that the electric field inside this atom is : Ein=Ze4πϵ0(1r^2−rR^3). b. What is the electric field at the surface of the atom? Is this the expected value? Explain.c. A uranium atom has Z = 92 and R = 0.10 nm. What is the electric field at r = R/2?

1. If a net force of 412 N is required to accelerate an object at 5.82 m/s2, what must theobject's mass be?

Answers

Answer:

The mass of the object is approximately 70.79 kilograms

Explanation:

We use Newton's second law to solve this problem. This law states that the net force on an object equals the product of its mass times the acceleration:

F_(net)=m\,a

Therefore, for this case, since the net force on the object and its acceleration are given, we can use the equation above to solve for the unknown mass:

F_(net)=m\,a\n412\,N=m\,(5.82\,(m)/(s^2) )\nm=(412\,N)/(5.82\,(m)/(s^2) ) \nm=70.79\.kg

A small charged sphere is attached to a thread and placed in an electric field. The other end of the thread is anchored so that when placed in the field the sphere is in a static situation (all the forces on the sphere cancel). If the thread is horizontal, find the magnitude and direction of the electric field. The sphere has a mass of 0.018 kg and contains a charge of + 6.80 x 103 C. The tension in the thread is 6.57 x 10-2 N. Show your work and/or explain your reasoning. (20 pts)

Answers

Answer:

E = 9.66* 10^(-6) N/C

direction is Horizontal

Explanation:

As we know that the string is horizontal here

so the tension force in the string is due to electrostatic force on it

now we will have

F = qE

so here the force is tension force on it

F = 6.57 * 10^(-2) N

Q = 6.80 * 10^3 C

now we have

6.57 * 10^(-2) = (6.80 * 10^3)E

E = 9.66* 10^(-6) N/C

direction is Horizontal

Final answer:

The magnitude of the electric field on the charged sphere in this scenario is approximately 1.17 x 10^-5 N/C. The direction of the electric field is horizontal, which is the same direction as the tension in the thread.

Explanation:

To start, we can use the equilibrium condition where the tension in the thread is equal to the force due to the electric field and gravity on the sphere. The formula to calculate the electric force is F = qE, and the gravitational force is F = mg, where F is the force, q is the electric charge, E is the electric field, m is the mass of the object, and g is the gravity constant.

Tension - electric force - gravitational force equals zero: T - F_electric - F_gravity = 0. We fill in the previous formulas: T - qE -mg = 0. This can be rearranged to E = (T + mg) / q.

In this case, the sphere's mass m is 0.018 kg, the tension T is 6.57 x 10^-2 N, and the sphere's charge q is 6.80 x 10^3 C, and we use g = 9.81 m/s². So, E = ((6.57 x 10^-2) + (0.018 * 9.81)) / 6.80 x 10^3.

This leads to an electric field magnitude of approximately 1.17 x 10^-5 N/C. The direction of the electric field is the same as the direction of the tension, which is horizontal due to the thread being horizontal.

Learn more about Electric Forces here:

brainly.com/question/20935307

#SPJ3

6. A barber raises his customer's chair by applying a force of 150 N to thehydraulic piston of area 0.01 m2. If the chair is attached to a piston with an
area of 0.1 m², how much force is needed to raise the customer?
STEP 1: List the known
and unknown values F =
A=
A,
STEP 2: Write the
correct equation
STEP 3: Insert the
known values into the
equation to solve for
the unknown value

Answers

Answer:

15N

Explanation:

F¹=150N

A=0.01m2²

F2=?

A2=0.1m²

P=F/A

F1/A2=F2/A1

150/0.1=F2/0.01

Why are chemical processes unable to produce the same amount of energy flowing out of the sun as nuclear fusion?

Answers

Answer:

Explanation:

One of the major differences between nuclear reactions and chemical reactions is that nuclear reactions involve larger amount of energy than chemical energy. This is because the force between the protons and neutrons in the nucleus of an atom is much higher than the force of attraction between electrons and the positively charged nucleus, hence nuclear reactions involves/requires a larger amount of energy (because it's reactions involve the nucleus) than chemical reactions (because it's reactions involve the electrons).

Thus, during nuclear fusion, two light nuclei are bombarded against one another to produce a larger/heavier nuclei with the release of large amount of energy (because the forces between the protons and neutrons are much higher) unlike when two atoms/molecules are chemically combined together to form a new molecule with the rearrangement of electrons in the valence shells of the participating molecules.

What is the magnitude of the force needed to hold the outer 2 cm of the blade to the inner portion of the blade?

Answers

Incomplete question.The complete question is here

What is the magnitude of the force needed to hold the outer 2 cm of the blade to the inner portion of the blade? The outer edge of the blade is 21 cm from the center of the blade, and the mass of the outer portion is 7.7 g. Even though the blade is 21cm long, the last 2cm should be treated as if they were at a point 20cm from the center of rotation.

Answer:

F= 0.034 N

Explanation:

Given Data

Outer=2 cm

Edge of blade=21 cm

Mass=7.7 g

Length of blade=21 cm

The last 2cm is treated as if they were at a point 20cm from the center of rotation

To Find

Force=?

Solution

Convert the given frequency to angular frequency

ω = 45 rpm * (2*pi rad / 1 rev) * (1 min / 60 s)

ω= 3/2*π rad/sec

Now to find centripetal force.

F = m×v²/r

F= m×ω²×r

Put the data

F = 0.0077 kg × (3/2×π rad/sec)²× 0.20 m

F= 0.034 N

Tripling the displacement from equilibrium of an object in simple harmonic motion will bring about a change in the magnitude of the object's acceleration by what factor?

Answers

Answer:

acceleration will be tripled.

Explanation:

We know, when an object is performing Simple harmonic motion, the force

experience by it is directly proportional to its displacement from its mean position.

Also, F = ma , therefore, acceleration is also proportional to its displacement .

Now, F = kx

Therefore, a=(k\ x)/(m)

If we triple the displacement i.e, 3x.

Acceleration a'=(k(3x))/(m)=3a.

Therefore, acceleration is also tripled.

Hence, this is the required solution.