In a warehouse, the workers sometimes slide boxes along the floor to move them. Two boxes were sliding toward each other and crashed. The crash caused both boxes to change speed. Based on the information in the diagram, which statement is correct? In your answer, explain what the forces were like and why the boxes changed speed.Box 1 has more mass than Box 2.
Box 1 and Box 2 are the same mass.
Box 1 has less mass than Box 2.

**YOU MUST BE DESCRIPTIVE! Any short answers not explaining it wont get brainliest!**
In a warehouse, the workers sometimes slide boxes along the - 1

Answers

Answer 1
Answer:

Answer:

box 1 has larger mass than box 2

Explanation:

We need to consider the linear momentum of the boxes immediately before and after they crash.

Recall that momentum is defined as mass times velocity.

So for before the collision, the linear momentum of the system of two boxes is:

m1 * 4km/h  - m2 * 8km/h

with m1 representing mass "1" on the left, and m2 representing mass 2 on the right.

Notice the sign of the linear momentum (one positive (moving towards the right) and the other one negative (moving towards the left)

For after the collision, we have or the linear momentum of the system:

- m1 * 2km/h - m2 * 1km/h

Then, since the linear momentum is conserved in the collision, we make the  initial momentum equal the final and study the mass relationship between m1 and m2:

4 m1 - 8 m2 = - 2 m1 - m2

combining like terms for each mas on one side and another of the equal sign, we get;

4 m1 + 2 m1 = 8 m2 - m2

6 m1 = 7 m2

therefore m1 = (7/6) m2

which (since 7/6 is a number larger than one) tells us that m1 is larger than m2 by a factor of 7/6

Therefore, answer 1 is the correct answer.


Related Questions

A conducting sphere has a net charge of -4.8x10-17 C. What is the approximate number of excess electrons on the sphere?
A ball connected to a 1.1 m string and is swing in circular fashion. It’s tangential velocity is 15 m/s. What is its centripetal acceleration?
A relaxed biceps muscle requires a force of 25.4 N for an elongation of 3.20 cm; under maximum tension, the same muscle requires a force of 520 N for the same elongation. Find Young's modulus (Pa) for the muscle tissue under each of these conditions if the muscle can be modeled as a uniform cylinder with an initial length of 0.200 m and a cross-sectional area of 50.0 cm2.
A system consists of two particles. The first particle has mass m1 = 6.60 kg and a velocity of (4.20i + 2.00j) m/s, and the second particle has mass m2 = 2.00 kg and a velocity of (2.00i − 3.60j) m/s. (Express your answers in vector form.)Required:a. What is the velocity of the center of mass of this system?b. What is the total momentum of this system?
HELP ME PLS!!!!Find the location of beryllium (Be) on the periodic table. What type of ion willberyllium form?A. An ion with a -2 chargeB. An ion with a +6 chargeC. An ion with a +2 chargeD. An ion with a -6 charge

A train whistle is heard at 300 Hz as the train approaches town. The train cuts its speed in half as it nears the station, and the sound of the whistle is then 290 Hz. What is the speed of the train before and after slowing down?

Answers

To solve this problem we will apply the concepts related to the Doppler effect. The Doppler effect is the change in the perceived frequency of any wave movement when the emitter, or focus of waves, and the receiver, or observer, move relative to each other. Mathematically it can be described as,

f = f_0 ((v_0)/(v_0-v))

Here,

f_0 = Frequency of Source

v_s = Speed of sound

f = Frequency heard before slowing down

f' = Frequency heard after slowing down

v  = Speed of the train before slowing down

So if the speed of the train after slowing down will be v/2, we can do a system equation of 2x2 at the two moments, then,

The first equation is,

f = f_0 ((v_0)/(v_0-v))

300 = f_0 ((343)/(343-v))

(300*343) - 300v = 343f_0

Now the second expression will be,

f' = f_0 ((v_0)/(v_0-v/2))

290 = (343)((v_0)/(343-v/2))

290*343-145v = 343f_0

Dividing the two expression we have,

((300*343) - 300v)/(290*343-145v) = 1

Solving for v, we have,

v = 22.12m/s

Therefore the speed of the train before and after slowing down is 22.12m/s

Final answer:

The speed of the train can be determined using the Doppler effect formula.

Explanation:

The question involves the Doppler effect, which is the change in frequency or wavelength of a wave as observed by an observer moving relative to the source of the wave. In this case, the train whistle's frequency changes from 300 Hz to 290 Hz as the train approaches the station.

To find the speed of the train before and after slowing down, we can use the formula for the Doppler effect:

f' = f((v + v_o)/(v - v_s))

Where:

  • f' is the observed frequency
  • f is the source frequency
  • v is the speed of sound
  • v_o is the speed of the observer (here it is the train)
  • v_s is the speed of the source (here it is the speed of sound)

By substituting the given values for observed frequency (290 Hz), source frequency (300 Hz), and the speed of sound (343 m/s), we can solve for the speed of the train before and after slowing down.

Learn more about Doppler effect here:

brainly.com/question/33454469

#SPJ3

An airplane is traveling 835 km/h in a direction 41.5 ∘ west of north. Find the components of the velocity vector in the northerly and westerly directions. How far north and how far west has the plane traveled after 2.20 h ?

Answers

I assume the graph is looking like in the picture bellow.

North component:
cos(41.5) * 835 = 625.37 km/h

West component of speed:
sin(41.5) * 835 = 553.29 km/h

After 2.2 hours plane will fly:
2.2*625.37 = 1375.81 km north
2.2*553.29 = 1217.23 km  west

Final answer:

To find the components of the velocity vector, you can use trigonometry. The north component is calculated using the sine function and the west component is calculated using the cosine function. After 2.20 hours, the distance traveled north and west can be found by multiplying the velocity components by the time.

Explanation:

To find the components of the velocity vector in the northerly and westerly directions, we can use trigonometry. The velocity vector is 835 km/h and is traveling in a direction 41.5° west of north. To find the north component, we can use the sine function: North component = velocity * sin(angle). To find the west component, we can use the cosine function: West component = velocity * cos(angle).

After 2.20 hours, we can find the distance traveled north and west by multiplying the velocity components by the time: Distance north = North component * time and Distance west = West component * time.

Let's calculate the values:

  1. North component = 835 km/h * sin(41.5°)
  2. West component = 835 km/h * cos(41.5°)
  3. Distance north = North component * 2.20 h
  4. Distance west = West component * 2.20 h

Learn more about Velocity components here:

brainly.com/question/14478315

#SPJ3

A bicycle racer is going downhill at 11.0 m/s when, to his horror, one of his 2.25 kg wheels comes off when he is 75.0 m above the foot of the hill. We can model the wheel as a thin-walled cylinder 85.0 cm in diameter and neglect the small mass of the spokes. (a) How fast is the wheel moving when it reaches the bottom of hill if it rolled without slipping all the way down? (b) How much total kinetic energy does it have when it reaches bottom of hill?

Answers

Answer:

a.) Speed V = 29.3 m/s

b.) K.E = 1931.6 J

Explanation: Please find the attached files for the solution

Final answer:

The wheel's speed at the bottom of the hill can be found through the conservation of energy equation considering both translational and rotational kinetic energy, while the total kinetic energy at the bottom of the hill is a sum of translational and rotational kinetic energy.

Explanation:

These two questions address the physics concepts of conservation of energy, kinetic energy, and rotational motion. To answer the first question, (a) How fast is the wheel moving when it reaches the bottom of the hill if it rolled without slipping all the way down?, we need to consider the potential energy the wheel has at the top of the hill is completely converted into kinetic energy at the bottom. This includes both translational and rotational kinetic energy. Solving for the final velocity, vf, which would be the speed of the wheel, we get vf = sqrt((2*g*h)/(1+I/(m*r^2))), where g is the acceleration due to gravity, h is the height of the hill, I is the moment of inertia of the wheel, m is the mass of the wheel, and r is the radius of the wheel.

For the second question, (b) How much total kinetic energy does it have when it reaches bottom of the hill?, we use the formula for total kinetic energy at the bottom of the hill, K= 0.5*m*v^2+0.5*I*(v/r)^2. Substituting the value of v found in the first part we find the kinetic energy which we can use the formula provided in the reference information.

Learn more about Conservation of Energy and Rotational Motion here:

brainly.com/question/13897993

#SPJ11

Leaving the distance between the 181 kg and the 712 kg masses fixed, at what distance from the 712 kg mass (other than infinitely remote ones) does the 72.6 kg mass experience a net force of zero? Answer in units of m

Answers

Answer:

Explanation:

The force due to gravitation is equal to zero for each of the masses.

M1= 181kg

M2= 712kg

m = 72.6kg

The distance between M1 and M2 is said to be fixed , therefore no value should be given I.e it's a constant.

From the formula for gravitational force we have that

F = GMm/r^2

GmM1/(d-r)^2. = GmM2/r^2

where r is the distance between the 72.6 kg and 712kg

d is the distance between M1 and M2

Solving mathematically

r(√M1+√M2) = d√M2

r = d√M2/√M1 + √M2

d×26.68/ 13.45+26.68

d×26.68/40.13

r = 0.665d

A tuning fork vibrates at 15,660 oscillations every minute. What is the period (in seconds) of one back and forth vibration of the tuning fork?

Answers

We are given:

The tuning fork vibrates at 15660 oscillations per minute

Period of one back-and forth movement:

the given data can be rewritten as:

1 minute / 15660 oscillations

60 seconds / 15660 oscillations          (1 minute  = 60 seconds)

dividing the values

0.0038 seconds / Oscillation

Therefore, one back and forth vibration takes 0.0038 seconds

5. The order is to give 600 mg of Ampicillin IM q8h. The directions for dilution on the 2 gm vial reads: Reconstitute with 4.8 mL of sterile water to obtain a concentration of 400 mg per mL. How many mL will you administer per dose?

Answers

The volume of Ampicillin IM q8h to be administered per dose is 1.5 mL when the order is to give 600 mg of it from a concentration of 400 mg per mL prepared by the dilution of 2 g in 4.8 mL of sterile water.  

1. The information we know

  • The order is to give 600 mg of Ampicillin.
  • From the dilution of 2 g in 4.8 mL was obtained a solution of 400 mg per mL of Ampicillin.

2. We need to find:

The volume of Ampicillin in mL per dose

3. Calculation of the Ampicillin's volume to be administered

We can calculate the volume of Ampicillin as follows:

V = 600 mg*(1 \:mL)/(400 \:mg) = 1.5 \:mL

Therefore, we need to administer 1.5 mL of Ampicillin per dose.

Find more about doses here:

I hope it helps you!

Answer:

1.5 ml

Explanation:

The nurse is to administer 600 mg of Ampicillin IM q8h

the reconstitute yield 400 mg per mL

400 mg is in 1 ml

600 mg will be (600 mg × 1 ml) / 400 mg = 1.5 ml

Other Questions