Answer:
Option c is correct
Explanation:
There are two types of collisions-elastic collision and inelastic collision.
In elastic collision, both kinetic energy and total momentum are conserved. On the other hand, in inelastic collision, total momentum is conserved but kinetic energy is not conserved. Thus, option b and d are incorrect.
Total energy is always conserved in both types. Thus, option a is incorrect.
In a perfectly inelastic collision, objects stick together. This happens because maximum kinetic energy is dissipated and used in bonding of the two objects. Thus, correct option is c.
Answer:
i believe its a?
Explanation:
In an inelastic collision, momentum is conserved
Answer:
Explanation:
Cart A is moving to the right with constant speed i.e. net acceleration is zero
because acceleration is change in velocity in given time
Cart B is moving towards right with gradually speed up so there is net acceleration which helps to increase the velocity s
This indicates the net force acting on the cart towards right
For cart C there is gradual slow down of cart which indicates cart is decelerating and a net force is acting towards which opposes its motion.
Answer:
The position of the arrows will not be on the target i.e. outside the bull's eye, neither will they be close to one another (widely scattered).
Explanation:
Accuracy refers to the closeness of a measurement to an actual or accepted value while precision refers to the closeness of measurements to one another.
Using archery as an illustration of precision and accuracy, measurements (arrows) that are neither accurate not precise are those arrows that will be far away or outside the bull's eye region (target) of the board and also far apart from one another.
In a nutshell, the arrows will be distant from the bull's eye or target (not accurate) and also distant from one another (not precise).
a water molecule,
A. the electronegative atom becomes strongly positive
B. the hydrogen atom becomes partially positive
O C. the oxygen atom becomes partially negative
If answer is right WILL GIVE BRAINLIEST
D. the hydrogen atom becomes partially negative
Answer:
I'm leaning twards A
Explanation:
The particle reach its minimum velocity at time 1.06 sec.
The function is given as
x=5t^3-8t^2+12
Differentiating the above equation with respect to time, to obtain the velocity
dx/dt=v=15t^2-16t
For maximum and minimum values, put dx/dt=0
15t^2-16t=0
On solving the equation, t=0, 1.06
Therefore at time t=1.06 sec, the particle has the minimum value of velocity.
The particle reaches its minimum velocity at t = 0 s or t = 16/15 s
Acceleration is rate of change of velocity.
a = acceleration ( m/s² )
v = final velocity ( m/s )
u = initial velocity ( m/s )
t = time taken ( s )
d = distance ( m )
Let us now tackle the problem!
Given:
To find the velocity function, we will derive the position function above.
Next to calculate the time to reach its minimum speed, then v = 0 m/s
Grade: High School
Subject: Physics
Chapter: Kinematics
Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle
Answer:
The total percent cold work done is 36.46%
Explanation:
Let initial metal thickness = T
Final metal thickness = t
The percent cold work done = WC
Then
%Wc = (T - t)/T × 100
% Wc = ( 0.096 - 0.061 )/0.096 ×100
Total %WC = 36.46%
Answer:
The total percent of cold work is 57.34%
Explanation:
Let x the initial thickness of the sheet. After 33% of cold working, the thickness is 0.096 in. Then:
x - 0.33x = 0.096
x = 0.143 in
the final thickness is equal to 0.061 in. The percent of cold work done is:
%
( a= ? m/s2 )
Calculate the proton's speed after 1.40 {\rm \mu s} in the field, assuming it starts from rest.
( V= ? m/s )"
To solve this problem we will start from the definition of Force, as the product between the electric field and the proton charge. Once the force is found, it will be possible to apply Newton's second law, and find the proton acceleration, knowing its mass. Finally, through the linear motion kinematic equation we will find the speed of the proton.
PART A ) For the electrostatic force we have that is equal to
Here
q= Charge
E = Electric Force
PART B) Rearrange the expression F=ma for the acceleration
Here,
a = Acceleration
F = Force
m = Mass
Replacing,
PART C) Acceleration can be described as the speed change in an instant of time,
There is not then
Rearranging to find the velocity,
The magnitude of the electric force felt by the proton is 4.4 x 10^-16 N. The proton's acceleration is 2.64 x 10^11 m/s^2. The proton's speed after 1.40 μs in the field is 3.70 x 10^5 m/s.
The charge of a proton is 1.6 x 10-19 coulombs and the electric field strength is 2750 N/C. Therefore, the magnitude of the electric force felt by the proton is (1.6 x 10-19 C)(2750 N/C) = 4.4 x 10-16 N. The mass of a proton is approximately 1.67 x 10-27 kilograms. Therefore, the proton's acceleration is (4.4 x 10-16 N)/(1.67 x 10-27 kg) = 2.64 x 1011 m/s2. Since the proton starts from rest, its initial velocity (u) is 0. Therefore, the proton's speed after 1.40 μs is v = (2.64 x 1011 m/s2)(1.40 x 10-6 s) = 3.70 x 105 m/s.
#SPJ3