Answer:
C
Explanation:
Similarity
Answer:
The power exerted by the mountain lion is 1,472.35 W.
Explanation:
Given;
mass of mountain, m₁ = 21 kg
mass of the cub, m₂ = 3 kg
height jumped by the mountain lion, h = 2 m
time taken for the mountain lion to jump, t = 1 s
Determine the weight of the lions on the top rock;
W = F = (m₁ + m₂)g
F = (21 + 3) x 9.8
F = (24) x 9.8
F = 235.2 N
Determine the final velocity of the mountain rock as it jumped to the top;
v² = u² + 2gh
where;
u is the initial velocity = 0
h is the height jumped = 2 m
v² = 0 + 2 x 9.8 x 2
v² = 39.2
v = √39.2
v = 6.26 m/s
The power exerted by the mountain lion is calculated as;
P = Fv
P = 235.2 x 6.26
P = 1,472.35 W
Therefore, the power exerted by the mountain lion is 1,472.35 W.
How much power is needed to lift a 750 kg elephant 14.3 m in 30.0 seconds?
Given Information:
Mass of elephant = m = 750 kg
Height = h = 14.3 m
time = t = 30 seconds
Required Information:
Power needed to lift elephant = P = ?
Answer:
Power needed to lift elephant ≈ 3507 watts
Explanation:
As we know power is given by
P = PE/t
Where PE is the potential energy and t is the time
Potential energy is given by
PE = mgh
Where m is the mass of elephant, g is the gravitational acceleration and h is the height to lift the elephant.
PE = 750*9.81*14.3
PE = 105212.25 Joules
Therefore, the required power to lift the elephant is
P = PE/t
P = 105212.25/30
P ≈ 3507 watts
a. +5 με
b. +10 μC
c. +20 μC
d. +40 με
d
Explanation:
because they made contact that means their new force will be the same
Sphere Z is initially charged with +40 C. When it is touched to three other spheres, the charge is evenly distributed among them. The resulting charge on sphere Y is +10 μC.
The initial charge on sphere Z is +40 C. When sphere Z is touched to sphere W, the charge is evenly distributed between the two spheres, resulting in each sphere having a charge of +20 C. Then, when sphere Z is touched to sphere X, the total charge is evenly distributed between all three spheres, resulting in each sphere having a charge of +13.33 C. Finally, when sphere Z is touched to sphere Y, the total charge is evenly distributed between all four spheres, resulting in each sphere having a charge of +10 C. Therefore, the resulting charge on sphere Y is +10 μC (option b).
#SPJ3
Answer:
Improvement in observational, and exploratory technology
Rapid increase in knowledge
International collaboration
Explanation:
Our knowledge of the solar system has increased greatly in the past few years due to to some factors which are listed below.
Improvement in observational, and exploratory technology: In recent years, developments in technology has led to the invention of advanced observational instruments and probes, that are used to study the solar system. Also more exploratory units are now developed to go out into the solar system and gather useful data which is then further processed to yield more results about our solar system.
Rapid increase in knowledge: The past few years has seen an increased number of theories proposed to explain phenomena in the solar system. Some of these theories have been seen to be accurate under experimentation, leading to newer and fresher insights into our solar system. Also, new experiments and research are carried out, all these leading to an exponential growth in our knowledge of the solar system.
International Collaboration: The sharing of knowledge by scientists all over has led to a better, quick understanding of the solar system. Also, scientists from different countries, working together on different experiment and data sharing regarding our solar system now allows our knowledge of the solar system to deepen faster.
Increase the mass of the car slightly.
Decrease the launch speed of the car slightly.
Increase the launch speed of the car slightly.
Answer:
we see that to increase the energy of the expensive we must increase the launch speed, since it increases quadratically
Explanation:
Kinetic energy is
K = ½ m v²
the speed of the expensive we can find it r
v² = v₀² + 2 a x
we can find acceleration with Newton's second law
F = m a
a = F / m
F= cte
substitute in the velocity equation
v² = v₀² + 2 F/m x
let's substitute in the kinetic energize equation
K = ½ m (v₀² + 2 F/m x)
K = ½ m v₀² + f x
we see that the kinetic energy depends on two tomines
in January in these systems the force for launching is constant, which is why decreasing the mass increases the speed of the vehicle and therefore increases the kinetic energy
As the launch speed increases the initial energy increases quadratically
we see that to increase the energy of the expensive we must increase the launch speed, since it increases quadratically