The _______ principle encourages us to resolve a set of stimuli, such as trees across a ridgeline, into smoothly flowing patternsA.) depth perception.
B.) perception.
C.) similarity.
D.) continuity.

Answers

Answer 1
Answer:

Answer:

C

Explanation:

Similarity


Related Questions

We start with 5.00 moles of an ideal monatomic gas with an initial temperature of 129 ∘C. The gas expands and, in the process, absorbs an amount of heat equal to 1180 J and does an amount of work equal to 2160 J . What is the final temperature Tfinal of the gas? Use R = 8.3145 J/(mol⋅K) for the ideal gas constant.
Solve for x–30 = 5(x + 1)
20.0 moles, 1840 g, of a nonvolatile solute, C 3H 8O 3 is added to a flask with an unknown amount of water and stirred. The solution is allowed to reach 90.0°C . The vapor pressure of pure water at this temperature is 528.8 mm Hg. The vapor pressure of the solution is 423.0 mm Hg. How many kg of water was present?
A 2100 g block is pushed by an external force against a spring (with a 22 N/cm spring constant) until the spring is compressed by 11 cm from its uncompressed length. The compressed spring and block rests at the bottom of an incline of 28◦ with the spring lying along the surface of the ramp.After all the external forces are removed (so the compressed spring releases the mass) how far D along the plane will the block move before coming to a stop? Answer in units of m.
Go to his profile and roast the mess out of him plzz 403665fl 50 points

A 21 kg mountain lion carries a 3kg cub in it's mouth as it jumps from rest on the ground to the top of a 2 m talk rock. It takes 1 seconds for the mountain lion to jump and reach the top. How much power did the mountain lion exert? I need help to solve for power

Answers

Answer:

The power exerted by the mountain lion is 1,472.35 W.

Explanation:

Given;

mass of mountain, m₁ = 21 kg

mass of the cub, m₂ = 3 kg

height jumped by the mountain lion, h = 2 m

time taken for the mountain lion to jump, t = 1 s

Determine the weight of the lions on the top rock;

W = F = (m₁ + m₂)g

F = (21 + 3) x 9.8

F = (24) x 9.8

F = 235.2 N

Determine the final velocity of the mountain rock as it jumped to the top;

v² = u² + 2gh

where;

u is the initial velocity = 0

h is the height jumped = 2 m

v² = 0 + 2 x 9.8 x 2

v² = 39.2

v = √39.2

v = 6.26 m/s

The power exerted by the mountain lion is calculated as;

P = Fv

P = 235.2 x 6.26

P = 1,472.35 W

Therefore, the power exerted by the mountain lion is 1,472.35 W.

What is required for a sound wave to be reflected?

Answers

when sound travels on a certain wave pattern or medium once it hits the surface or surfaces of another wave or mdeium and then it bounces back that is a reflected sound wave.

QuestIuI(2 PUMILS)
How much power is needed to lift a 750 kg elephant 14.3 m in 30.0 seconds?

Answers

Given Information:

Mass of elephant = m = 750 kg

Height = h = 14.3 m  

time = t = 30 seconds

Required Information:

Power needed to lift elephant = P = ?

Answer:

Power needed to lift elephant ≈ 3507 watts

Explanation:

As we know power is given by

P = PE/t

Where PE is the potential energy and t is the time

Potential energy is given by

PE = mgh

Where m is the mass of elephant, g is the gravitational acceleration and h is the height to lift the elephant.

PE = 750*9.81*14.3

PE = 105212.25 Joules

Therefore, the required power to lift the elephant is

P = PE/t

P = 105212.25/30

P ≈ 3507 watts

Students have four identical, hollow, uncharged conducting spheres, W, X, Y, and Z.Sphere Z is given a positive charge of +40 C. Sphere Z is touched first to sphere W, then sphere X, and finally to sphere Y. What is the resulting charge on sphere Y?

a. +5 με

b. +10 μC

c. +20 μC

d. +40 με​

Answers

d

Explanation:

because they made contact that means their new force will be the same

Final answer:

Sphere Z is initially charged with +40 C. When it is touched to three other spheres, the charge is evenly distributed among them. The resulting charge on sphere Y is +10 μC.

Explanation:

The initial charge on sphere Z is +40 C. When sphere Z is touched to sphere W, the charge is evenly distributed between the two spheres, resulting in each sphere having a charge of +20 C. Then, when sphere Z is touched to sphere X, the total charge is evenly distributed between all three spheres, resulting in each sphere having a charge of +13.33 C. Finally, when sphere Z is touched to sphere Y, the total charge is evenly distributed between all four spheres, resulting in each sphere having a charge of +10 C. Therefore, the resulting charge on sphere Y is +10 μC (option b).

Learn more about Conducting spheres here:

brainly.com/question/12444946

#SPJ3

Give some reasons for our knowledge of the solar system has increased considerably in the past few years. Support your response with at least 3 reasons with details regarding concepts from the units learned in this course.

Answers

Answer:

Improvement in observational, and exploratory technology

Rapid increase in knowledge

International collaboration

Explanation:

Our knowledge of the solar system has increased greatly in the past few years due to to some factors which are listed below.

Improvement in observational, and exploratory technology: In recent years, developments in technology has led to the invention of advanced observational instruments and probes, that are used to study the solar system. Also more exploratory units are now developed to go out into the solar system and gather useful data which is then further processed to yield more results about our solar system.

Rapid increase in knowledge: The past few years has seen an increased number of theories proposed to explain phenomena in the solar system. Some of these theories have been seen to be accurate under experimentation, leading to newer and fresher insights into our solar system. Also, new experiments and research are carried out, all these leading to an exponential growth in our knowledge of the solar system.

International Collaboration: The sharing of knowledge by scientists all over has led to a better, quick understanding of the solar system. Also, scientists from  different countries, working together on different experiment and data sharing regarding our solar system now allows our knowledge of the solar system to deepen faster.

An engineer is designing a small toy car that a spring will launch from rest along a racetrack. She wants to maximize the kinetic energy of the toy car when it launches from the end of a compressed spring onto the track, but she can make only a slight adjustment to the initial conditions of the car. The speed of the car just as it moves away from the spring onto the track is called the launch speed. Which of the following modifications to the car design would have the greatest effect on increasing the kinetic energy of the car? Explain your reasoning.Decrease the mass of the car slightly.
Increase the mass of the car slightly.
Decrease the launch speed of the car slightly.
Increase the launch speed of the car slightly.

Answers

Answer:

we see that to increase the energy of the expensive we must increase the launch speed, since it increases quadratically

Explanation:

Kinetic energy is

            K = ½ m v²

the speed of the expensive we can find it r

            v² = v₀² + 2 a x

we can find acceleration with Newton's second law

            F = m a

             a = F / m

             F= cte

substitute in the velocity equation

           v² = v₀² + 2 F/m  x

let's substitute in the kinetic energize equation

         K = ½ m (v₀² + 2 F/m  x)

           

         K = ½ m v₀²  + f x

we see that the kinetic energy depends on two tomines

in January in these systems the force for launching is constant, which is why decreasing the mass increases the speed of the vehicle and therefore increases the kinetic energy

As the launch speed increases the initial energy increases quadratically

we see that to increase the energy of the expensive we must increase the launch speed, since it increases quadratically