Answer:
Explanation:
Since the x and y components are given
The vectors Magnitude = √32²+(-59)²
=67.12m
Answer:
V = 1.69 * 10^6 V
Explanation:
Parameters given:
Electric field, E = 59V/m
Charge, q = 5.40C
We need to first find the distance between the electric charge and the point of consideration to be able to find the Electric potential difference.
Electric field is given as:
E = (kq/r^2)
k = Coulombs constant
=> r^2 = kq/E
=> r^2 = (9 * 10^9 * 5.4) / 59
r^2 = 8.2 * 10^8
r = 2.84 * 10^4 m
We can now find the Electric Potential by using:
V = kq/r
Hence,
V = (9 * 10^9 * 5.4) / (2.84 * 10^4)
V = 1.69 * 10^6 V
The minimum angle that the ladder make with the floor before it slips is 51.34 Degree.
Given data:
The weight of ladder is, W = 100 N.
The length of ladder is, L = 8.0 m.
The coefficient of static friction between ladder and floor is, .
Apply the Newton' law in vertical direction to obtain the value of Normal Force (P) as,
And force along the horizontal direction is,
Now, taking the torque along the either end of ladder as,
Solving as,
Thus, we can conclude that the minimum angle that the ladder make with the floor before it slips is 51.34 Degree.
Learn more about the frictional force here:
Answer:
The minimum angle is 51.34°
Explanation:
Given that,
Weight of ladder = 100 N
Length = 8.0 m
Coefficient of static friction = 0.40
We need to calculate the normal force
Using Newtons law in vertical direction
We need to calculate the normal force
Using Newtons law in horizontal direction
We need to calculate the minimum angle
Using torque about the point A then
Put the value into the formula
Hence, The minimum angle is 51.34°
Answer:210000N
Explanation:
Pressure=3x10^5pa
area=0.7m^2
Force = pressure x area
Force=3x10^5x0.7
Force=210000N
Answer:
a) 0.658 seconds
b) 0.96 inches
Explanation:
Time taken by the ball to reach the highest point is 0.14 seconds
The highest point reached by the snowball above its release point is 0.315 ft
Total height the snowball will fall is 4+0.315 = 4.315 ft
The snowball will reach the bank at 0.14+0.518 = 0.658 seconds after it has been thrown
The snowball goes 0.5-0.42 = 0.08 ft = 0.96 inches
Answer:
v=9.6 km/s
Explanation:
Given that
The mass of the car = m
The mass of the truck = 4 m
The velocity of the truck ,u= 12 km/s
The final velocity when they stick = v
If there is no any external force on the system then the total linear momentum of the system will be conserve.
Pi = Pf
m x 0 + 4 m x 12 = (m + 4 m) x v
0 + 48 m = 5 m v
5 v = 48
v=9.6 km/s
Therefore the final velocity will be 9.6 km/s.
Answer:
change in entropy is 1.44 kJ/ K
Explanation:
from steam tables
At 150 kPa
specific volume
Vf = 0.001053 m^3/kg
vg = 1.1594 m^3/kg
specific entropy values are
Sf = 1.4337 kJ/kg K
Sfg = 5.789 kJ/kg
initial specific volume is calculated as
FROM STEAM Table
at 200 kPa
specific volume
Vf = 0.001061 m^3/kg
vg = 0.88578 m^3/kg
specific entropy values are
Sf = 1.5302 kJ/kg K
Sfg = 5.5698 kJ/kg
constant volume so
Change in entropy
=3( 3.36035 - 2.88) = 1.44 kJ/kg