Answer:
5.05 m/s
Explanation:
The distance from the bottom of his feet to his center of mass is (when is hanging at rest) is 2.1 - 1.3 = 0.8 m. Assume he keeps the posture, as soon as his feet touches the ground, his center of mass is 0.8 m above the ground. This would mean that he has traveled a distance of 2.1 - 0.8 = 1.3 m vertically. Using the law of energy conservation for potential and kinetic energy, also let the ground be ground 0 for potential energy, we have the following mechanical conservation energy:
Since he was hanging at rest, his initial kinetic energy at H = 2.1m must be 0. Let g = 9.81m/s2 and m be his mass, we can calculate for his velocity v at h = 0.8 m. First start by dividing both sides by m
Answer:
The acceleration of the mower will be "4.7 m/s²".
Explanation:
Balance of vertical force will be:
⇒
For wheel to take off at A,
⇒
Hence,
Balancing moments about G will be:
⇒
As we know,
Force, F =
On putting the values, we get
⇒ =
⇒ =
Now,
Acceleration, a =
⇒ =
⇒ =
2N
250N
5000N
50000N
Answer:
50000N
Explanation:
Force = mass × acceleration
= 2500 × 20
= 50000N
Answer:
1838216 J
Explanation:
95 km/h = 26.39 m/s
40 km/h = 11.11 m/s
Initial kinetic energy
= .5 x 1600 x(26.39)²
= 557145.67 J
Final kinetic energy
= .5 x 1600 x ( 11.11)²
= 98745.68 J
Loss of kinetic energy
= 458400 J
Loss of potential energy
= mg x loss of height
= 1600 x 9.8 x 340 sin 15
= 1379816 J
Sum of Loss of potential energy and Loss of kinetic energy
= 1379816 + 458400
= 1838216 J
This is the work done by the friction . So this is heat generated.
To calculate the thermal energy dissipated from the brakes of a car, use the equation Q = Mgh/10, where Q is the energy transferred to the brakes, M is the mass of the car, g is the acceleration due to gravity, and h is the height of the hill. The temperature change of the brakes can then be calculated using the equation Q = mc∆T, where m is the mass of the brakes and c is its specific heat capacity.
The thermal energy dissipated from the brakes of a car can be calculated by converting the gravitational potential energy lost by the car into internal energy of the brakes. By using the equation Q = Mgh/10, where Q is the energy transferred to the brakes, M is the mass of the car, g is the acceleration due to gravity, and h is the height of the hill, we can calculate the thermal energy dissipated. From there, the temperature change of the brakes can be calculated using the equation Q = mc∆T, where m is the mass of the brakes and c is its specific heat capacity.
#SPJ11
Answer:
a) Current = 11 mA
b) Energy = 66 mJ
c) Power = 101.54 W
Explanation:
a) Voltage, V = IR
Voltage, V = 6 V, Resistance, R = 550 Ω
Current, I
b) Energy = Current x Voltage = 6 x 0.011 = 0.066 J = 66 mJ
c)