According to the Heisenberg uncertainty principle, quantum mechanics differs from classical mechanics in that: Select the correct answer below: Quantum mechanics involves particles that do not move. It is impossible to calculate with accuracy both the position and momentum of particles in classical mechanics. The measurement of an observable quantity in the quantum domain inherently changes the value of that quantity. All of the above

Answers

Answer 1
Answer:

Answer:

Statement 3 is correct.

Heisenberg's uncertainty principle explains that the measurement of an observable quantity in the quantum domain inherently changes the value of that quantity

Explanation:

Classical mechanics is the study of motion of big, relatable bodies that we come in contact with in our day to day lives.

Quantum mechanics refers to this same study, but for particles on a subatomic level.

Obviously, Classical mechanics' theories and principles were first discovered and they worked for their intended uses (still work!). But when studies on particles on a sub-atomic level intensified, it became impractical to apply those theories and principles to these sub-atomic particles that displayed wave-particle duality nature properly.

Heisenberg's Uncertainty principle came in a time that explanations and justifications were needed to adapt these theories to sub-atomic particles.

The principle explains properly that it is impossible to measure the position and velocity (momentum) of a sub-atomic particle in exact terms and at the same time.

Mathematically, it is presented as

Δx.Δp ≥ ℏ

Where ℏ= adjusted Planck's constant.

ℏ= (h/2π)

And Δx and Δp are the uncertainties in measuring the position and momentum of sub-atomic particles.

The major reason for this is the wave-particle duality of sub-atomic particles. They exist as waves and particles at the same time that a complete knowledge of their position mean that a complete ignorance of their velocity and vice versa.

Taking the statements one at a time

Statement 1

Quantum Mechanics studies sub-atomic particles which are mostly always in motion. So, this is false.

Statement 2

It is impossible to calculate with accuracy both the position and momentum of particles in quantum mechanics not classical mechanics. As stated above, the reason for the uncertainty is the wave-particle duality of sub-atomic particles which the particle in classical mechanics do not exhibit obviously enough.

Statement 3

Any attempt to measure precisely the velocity of a subatomic particle, will knock it about in an unpredictable way, so that a simultaneous measurement of its position has no validity.

An essential feature of quantum mechanics is that it is generally impossible, even in principle, to measure a system without disturbing it. This is basically the uncertainty principle rephrased. This is the only true statement.

Hope this Helps!!!


Related Questions

"A proton is placed in a uniform electric field of 2750 N/C. You may want to review (Page) . For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Electron in a uniform field. Calculate the magnitude of the electric force felt by the proton. Express your answer in newtons.(F = ? )Calculate the proton's acceleration.( a= ? m/s2 )Calculate the proton's speed after 1.40 {\rm \mu s} in the field, assuming it starts from rest.( V= ? m/s )"
Help!!! Need answer ASAP.
A 100 A current circulates around a 2.00-mm-diameter superconducting ring. A. What is the ring's magnetic dipole moment?B. What is the on-axis magnetic field strength 4.70 cm from the ring?
A piston-cylinder device contains 5 kg of refrigerant-134a at 0.7 MPa and 60°C. The refrigerant is now cooled at constant pressure until it exists as a liquid at 24°C. If the surroundings are at 100 kPa and-24°C, determine: (a) the exergy of the refrigerant at the initial and the final states and (b) the exergy destroyed during this process.
A block slides from rest with negligible friction down the track above, descending a vertical height of 5.0 m to point P at the bottom. It then slides on the horizontal surface. The coefficient of friction between the block and the horizontal surface is 0.20. How far does the block slide on the horizontal surface before it comes to rest?

. Set the applied force to Force necessary to Keep the box Moving without accelerating. Restart the animation. Just before the box hits the wall, stop the animation. What can you tell me about relative magnitudes of the frictional force and the applied force

Answers

Answer:

elative magnitude of the two forces is the same and they are applied in a constant direction.

Explanation:

Newton's second law states that the sum of the forces is equal to the mass times the acceleration  

              ∑ F = m a

in this case there are two forces on the x axis

             F_applied - fr = 0

since they indicate that the velocity is constant, consequently

             F_applied = fr

the relative magnitude of the two forces is the same and they are applied in a constant direction.

What displacement do I have if I travel at 10 m/s E for 10 s? A. 1 m E B. 1 m C. 100 m D. 100 m E Scalar quantities include what 2 things? A. Number and direction B. Numbers and units C. Units and directions D. Size and direction What measures distance in a car? A. Odometer B. Pressure gauge C. Speedometer D. Steering wheel What displacement do I have if I travel 10 m E, then 6 m W, then 12 m E? A. 28 m E B. 16 m E C. 16 m D. 28 m

Answers

Hope this will help you

Final answer:

The displacement is 100 m to the east.

Explanation:

The displacement can be calculated using the formula:

Displacement = Velocity × Time

In this case, the velocity is 10 m/s to the east and the time is 10 seconds.

So, Displacement = 10 m/s × 10 s = 100 m to the east.

Learn more about Displacement here:

brainly.com/question/33459975

1. What is the frequency of light waves with wavelength of 5 x 10-⁷ m? ​

Answers

Taking into account the definition of wavelength, frecuency and propagation speed, the frequency of light waves with wavelength of 5×10⁻⁷ m is 6×10¹⁴ Hz.

Definition of wavelength

First of all, wavelength is the minimum distance between two successive points on the wave that are in the same state of vibration. It is expressed in units of length (m).

Definition of frequency

On the other side, frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).

Definition of propagation speed

Finally, the propagation speed is the speed with which the wave propagates in the medium, that is, it is the magnitude that measures the speed at which the wave disturbance propagates along its displacement.

The propagation speed relate the wavelength (λ) and the frequency (f) inversely proportional using the following equation:

v = f× λ

All electromagnetic waves propagate in a vacuum at a constant speed of 3×10⁸ m/s, the speed of light.

Frequency of light waves with wavelength of 5×10⁻⁷ m

In this case, you know:

  • v= 3×10⁸ m/s
  • f= ?
  • λ= 5×10⁻⁷ m

Replacing in the definition of propagation speed:

3×10⁸ m/s = f× 5×10⁻⁷ m

Solving:

3×10⁸ m/s ÷ 5×10⁻⁷ m= f

f= 6×10¹⁴ Hz

In summary, the frequency of light waves with wavelength of 5×10⁻⁷ m is 6×10¹⁴ Hz.

Learn more about wavelength, frecuency and propagation speed:

brainly.com/question/2232652?referrer=searchResults

brainly.com/question/7321084?referrer=searchResults

brainly.com/question/14946166?referrer=searchResults

Answer:

Speed of light =m/s

wavelength = m

frequency = ?

we have

Speed = frequency × wavelength

3* 10^8 = frequency × 5 * 10^(-7)

 Frequency = (3*10^8)/(5*10^(-7))=6*10^(14)hz

A body with initial velocity 8.0 m/s moves along a straight line with constant acceleration and travels640 m in 40 s. For the 40 s interval, find (a) the average velocity, (b) the final velocity, and (c) the
acceleration.​

Answers

Answer:

(a) The average velocity is 16 m/s

(b) The acceleration is 0.4 m/s^2

(c) The final velocity is 24 m/s

Explanation:

Constant Acceleration Motion

It's a type of motion in which the velocity (or the speed) of an object changes by an equal amount in every equal period of time.

Being a the constant acceleration, vo the initial speed, vf the final speed, and t the time, final speed is calculated as follows:

v_f=v_o+at\qquad\qquad [1]

The distance traveled by the object is given by:

\displaystyle x=v_o.t+(a.t^2)/(2)\qquad\qquad [2]

(a) The average velocity is defined as the total distance traveled divided by the time taken to travel that distance.

We know the distance is x=640 m and the time taken t= 40 s, thus:

\displaystyle \bar v=(x)/(t)=(640)/(40)=16

The average velocity is 16 m/s

Using the equation [1] we can solve for a:

\displaystyle a=(v_f-v_o)/(t)

(c) From [2] we can solve for a:

\displaystyle a= 2(x-v_ot)/(t^2)

Since vo=8 m/s, x=640 m, t=40 s:

\displaystyle a= 2(640-8\cdot 40)/(40^2)=0.4

The acceleration is 0.4 m/s^2

(b) The final velocity is calculated by [1]:

v_f=8+0.4\cdot 40

v_f=8+16=24

The final velocity is 24 m/s

Final answer:

The average velocity is 16 m/s, the final velocity is 8.0 m/s + (acceleration * 40 s), and the acceleration can be found by solving the equation 640 m = (8.0 m/s * 40 s) + (0.5 * acceleration * (40 s)^2.

Explanation:

To find the average velocity, we use the formula: average velocity = total displacement / total time. In this case, the total displacement is 640 m and the total time is 40 s, so the average velocity is 640 m / 40 s = 16 m/s.

To find the final velocity, we can use the formula: final velocity = initial velocity + (acceleration * time). In this case, the initial velocity is 8.0 m/s and the time is 40 s. Since the question states that it moves with constant acceleration, we can assume that the acceleration is the same throughout the 40 s interval. Therefore, the final velocity is 8.0 m/s + (acceleration * 40 s).

To find the acceleration, we can use the formula: total displacement = (initial velocity * time) + (0.5 * acceleration * time^2). In this case, the total displacement is 640 m, the initial velocity is 8.0 m/s, and the time is 40 s. Solving for acceleration, we have 640 m = (8.0 m/s * 40 s) + (0.5 * acceleration * (40 s)^2).

Learn more about Average velocity, Final velocity, Acceleration here:

brainly.com/question/21474168

#SPJ3

A system consists of two particles. The first particle has mass m1 = 6.60 kg and a velocity of (4.20i + 2.00j) m/s, and the second particle has mass m2 = 2.00 kg and a velocity of (2.00i − 3.60j) m/s. (Express your answers in vector form.)Required:
a. What is the velocity of the center of mass of this system?
b. What is the total momentum of this system?

Answers

Answer:

a. 8.465 m/s

b.22.3659

At one instant, a 17.0-kg sled is moving over a horizontal surface of snow at 4.10 m/s. After 6.15 s has elapsed, the sled stops. Use a momentum approach to find the magnitude of the average friction force acting on the sled while it was moving.

Answers

Answer:

force = 11.33 kg-m/s^(2)

Explanation:

given data:

sled mass = 17.0 kg

inital velocity (U) = 4.10 m/s

elapsed time (T) 6.15 s

final velocity (V) = 0

final momentum P2 = 0

Initial momentum of sledge is

P_(1)=mU

P_(1)= 17.0 * 4.10 = 69.7 kg- m/s

from newton second law of motion

F=(\Delta P)/(\Delta t)

F = (P_(1)-P_(2))/(T)

Kgm/s^2

F = (69.7-0)/(6.15)= 11.33[tex]kg-m/s^(2)[/tex]