The moment of inertia of the propeller is 0.0036 kgm² and the energy required is 663.21 J
Given that the mass of the propellers is m = 0.040kg,
and their length is L = 0.30m
The moment of inertia of a rod with the rotation axis at one end is given by :
so for 3 propellers:
I = 0.04 × 0.09
I = 0.0036 kgm²
Now, the frequency is given f = 5800 rpm
so anguar speed, ω = 5800×(2π/60)
ω = 607 rad/s
Energy required:
E = ¹/₂Iω²
E = 0.5 × 0.0036 × (607)² J
E = 663.21 J
Learn more about moment of inertia:
Solution :
Given :
Length of the propeller rods, L =0.30 m
Mass of each, M = 0.040 kg
Moment of inertia of one propeller rod is given by
Therefore, total moment of inertia is
Now energy required is given by
where, angular speed, ω = 5800 rpm
= 607.4 rad/s
Therefore energy,
= 664.1 J
Answer:
Explanation:
Given;
Thickness of the glass plate,
refractive index of the glass plate,
wavelength of light source in vacuum,
distance between the source and the screen,
Distance travelled by the light from source to screen in vacuum:
So the no. of wavelengths in the vacuum:
.......................(1)
Now we find the wavelength of the light wave in the glass:
where:
wavelength of light in the medium of glass.
Now the no. of wavelengths in the glass:
............................(2)
From (1) & (2):
Answer:
The volume flow rate is 3.27m³/s
Diameter at the refinery is 88.64cm
Explanation:
Given
At the wellhead
Pipes diameter, d2 = 59.1cm = 0.591m
Flow speed of petroleum f2 = 11.9m/s
At the refinery,
Pipes diameter, d1 = ? Unknown
Flow speed of petroleum, f1 = 5.29m/s
Calculating the volume flow rate of petroleum along the pipe.
Volume flow rate = Flow rate * Area along the pipe
V = 11.9 * πd²/4
V = 11.9 * 22/7 * 0.591²/4
V = 3.265778m³/s
The volume flow rate is 3.27m³/s -------- Approximated
Since it's not stated if the flowrate is uniform throughout the pipe, we'll assume that flow rate is the same through out...
Using V1A1 = V2A2, where V1 & V2 Volume flow rate at both ends and area = Area of pipes at both ends
This gives;
V1A1 = V1A2
V1*πd1²/4 = V2 * πd2²/4 ----------- Divide through by π/4
So, we are left with
V1d1² = V2d2²
5.29 * d1²= 11.9 * 59.1²
d1² = 11.9 * 59.1²/5.29
d1² = 7857.172
d1 = √7857.172
d1 = 88.6406904305240618
d1 = 88.64cm --------------- Approximated
(a) What is the greatest wavelength of light that can be absorbed by the material?
(b) In what region of the electromagnetic spectrum is this wavelength located?
Answer:
a)
b) infrared region
Explanation:
Photon energy is the "energy carried by a single photon. This amount of energy is directly proportional to the photon's electromagnetic frequency and is inversely proportional to the wavelength. If we have higher the photon's frequency then we have higher its energy. Equivalently, with longer the photon's wavelength, we have lower energy".
Part a
Is provide that the smallest amount of energy that is needed to dissociate a molecule of a material on this case 0.42eV. We know that the energy of the photon is equal to:
Where h is the Planck's Constant. By the other hand the know that and if we solve for f we have:
If we replace the last equation into the E formula we got:
And if we solve for we got:
Using the value of the constant we have this:
Part b
If we see the figure attached, with the red arrow, the value for the wavelenght obtained from part a) is on the infrared region, since is in the order of
0.46Ω
The electromotive force (E) in the circuit is related to the terminal voltage(V), of the circuit and the internal resistance (r) of the battery as follows;
E = V + Ir --------------------(a)
Where;
I = current flowing through the circuit
But;
V = I x Rₓ ---------------------(b)
Where;
Rₓ = effective or total resistance in the circuit.
First, let's calculate the effective resistance in the circuit:
The effective resistance (Rₓ) in the circuit is the one due to the resistances in the two lightbulbs.
Let;
R₁ = resistance in the first bulb
R₂ = resistance in the second bulb
Since the two bulbs are both rated at 4.0W ( at 12.0V), their resistance values (R₁ and R₂) are the same and will be given by the power formula;
P =
=> R = -------------------(ii)
Where;
P = Power of the bulb
V = voltage across the bulb
R = resistance of the bulb
To get R₁, equation (ii) can be written as;
R₁ = --------------------------------(iii)
Where;
V = 12.0V
P = 4.0W
Substitute these values into equation (iii) as follows;
R₁ =
R₁ =
R₁ = 36Ω
Following the same approach, to get R₂, equation (ii) can be written as;
R₂ = --------------------------------(iv)
Where;
V = 12.0V
P = 4.0W
Substitute these values into equation (iv) as follows;
R₂ =
R₂ =
R₂ = 36Ω
Now, since the bulbs are connected in parallel, the effective resistance (Rₓ) is given by;
= + -----------------(v)
Substitute the values of R₁ and R₂ into equation (v) as follows;
= +
=
Rₓ =
Rₓ = 18Ω
The effective resistance (Rₓ) is therefore, 18Ω
Now calculate the current I, flowing in the circuit:
Substitute the values of V = 11.7V and Rₓ = 18Ω into equation (b) as follows;
11.7 = I x 18
I =
I = 0.65A
Now calculate the battery's internal resistance:
Substitute the values of E = 12.0, V = 11.7V and I = 0.65A into equation (a) as follows;
12.0 = 11.7 + 0.65r
0.65r = 12.0 - 11.7
0.65r = 0.3
r =
r = 0.46Ω
Therefore, the internal resistance of the battery is 0.46Ω
Answer:
Explanation:
Internal resistance is a concept that helps model the electrical consequences of the complex chemical reactions that occur within a battery. When a charge is applied to a battery, the internal resistance can be calculated using the following equation:
Where:
As you can see, we don't know the exactly value of the . However we can calculated that value using the next simple operations:
The problem tell us that the power of each lightbulb is 4.0 W at 12.0 V, hence let's calculated the power at 11.7V using Cross-multiplication:
Solving for :
Now, the electric power is given by:
Where:
So:
Now, because of the lightbulbs are connected in parallel the equivalent resistance is given by:
Finally, now we have all the data, let's replace it into the internal resistance equation:
Bioelectrical impedance
Skinfold testing
Hydrostatic weighing
Answer: Skinfold testing
Explanation:
Skinfold testing, is also referred to as calliper testing and it's used to know the body fat percentage. Skinfold testing is an inexpensive, portable, and common way to assess body fat in the fitness industry.
It is typically done with the use of caliper tapes, marker pens which makes it cheap. Skinfold testing isn't usually accurate which is as a result of human errors.
Answer:
The answer is 9 m.
Explanation:
Using the kinematic equation for an object in free fall:
In this case:
Plugging those values into the previous equation:
The negative sign is because the reference taken. If I see everything from the rescuer point of view.