Answer:
The angular speed of the system at the instant the beads reach the ends of the rod is 14.87 rad/s
Explanation:
Moment of inertia is given as;
I = ¹/₁₂×ML² + 2mr²
where;
I is the moment of inertia
M is the mass of the rod = 0.19 kg
L is the length of the rod = 0.43 m
m is the mass of the bead = 0.038 kg
r is the distance of one bead
Initial moment of inertial is given as;
Final moment of inertia is also given as
Angular momentum is the product of angular speed and moment of inertia;
= Iω
From the principle of conservation of angular momentum;
Given;
ωi = 12 rad/s
r₁ = 10.0 cm = 0.1 m
r₂ = 10.0cm/4 = 2.5 cm = 0.025 m
Substitute these values in the above equation, we will have;
Therefore, the angular speed of the system at the instant the beads reach the ends of the rod is 14.87 rad/s
Complete Image
Consider two aluminum rods of length 1 m, one twice as thick as the other. If a compressive force F is applied to both rods, their lengths are reduced by and , respectively.The ratio ΔLthick rod/ΔLthin rod is:
a.) =1
b.) <1
c.) >1
Answer:
The ratio is less than 1 i.e option B is correct
Explanation:
The Young Modulus of a material is generally calculated with this formula
Where is the stress =
is the strain =
Making Strain the subject
now in this question we are that the same tension was applied to both wires so
would be constant
Hence
for the two wire we have that
Looking at young modulus formula
Now we are told that a comprehensive force is applied to the wire so for this question
is constant
And given that the length are the same
so
Now we are told that one is that one rod is twice as thick as the other
So it implies that one would have an area that would be two times of the other
Assuming that
So
From the question the length are equal
So
Hence the ratio is less than 1
Answer:
Please find the attached file for the figure.
Explanation:
Given that a bicyclist speeds along a road at 10 m/s for 6 seconds.
Its acceleration = 10/6 = 1.667 m/s^2
The distance covered = 1/2 × 10 × 6
Distance covered = 30 m
That is, displacement = 30 m
Then she stops for three seconds to make a 180˚ turn and then travels at 5 m/s for 3 seconds.
The acceleration = 5/3 = 1.667 m/s^2
The displacement = 1/2 × 5 × 3
Displacement = 7.5 m
The resultant acceleration will be equal to zero.
While the resultant displacement will be:
Displacement = 30 - 7.5 = 22.5 m
Please find the attached file for the sketch.
Answer:
The area of the water stream will be 1.74 cm^2
Explanation:
initial velocity of water u = 33.2 cm/s
initial area = 6.4 cm^2
height of fall = 7.05 cm
final area before hitting the sink = ?
as the water falls down the height, it accelerates under gravity; causing the speed to increase, and the area to decrease.
first we find the velocity before hitting the sink
using
-----Newton's equation of motion
where v is the velocity of the water stream at the sink
u is the initial speed of the water at the spout
h is the height of fall
g is acceleration due to gravity, and it is positive downwards.
g = 981 cm/s^2
imputing relevant values, we have
= 122.206 cm/s
according to continuity equation,
A1v1 = A2v2
where A1 is the initial area
V1 = initial velocity
A2 = final area
V2 = final velocity
6.4 x 33.2 = 122.206 x A2
212.48 = 122.206 x A2
A2 = 212.48 ÷ 122.206 ≅ 1.74 cm^2
Answer:
3.65 x mass
Explanation:
Given parameters:
Time = 20s
Initial velocity = 0m/s
Final velocity = 73m/s
Unknown:
Force the ball experience = ?
Solution:
To solve this problem, we apply the equation from newton's second law of motion:
F = m
m is the mass
v is the final velocity
u is the initial velocity
t is the time taken
So;
F = m ( ) = 3.65 x mass
To calculate the force experienced by the ball to accelerate from rest to 73 m/s, use Newton's second law of motion.
To calculate the force experienced by the ball to accelerate from rest to 73 m/s, we can use Newton's second law of motion, which states that force equals mass times acceleration (F = m * a).
Since the ball starts from rest, its initial velocity (vi) is 0 m/s. The final velocity (vf) is 73 m/s. The time (t) taken for the impact is given as 2 x 10 seconds. So, the acceleration (a) can be calculated using the formula a = (vf - vi) / t.
Substituting the given values into the equation, we have a = (73 - 0) / (2 x 10) = 3.65 m/s^2.
Now, we can find the force (F) using the formula F = m * a. If the mass of the ball is known, we can substitute it into the equation to find the force experienced by the ball.
#SPJ3
Answer: 1.64 *10^19 electrons
Explanation: In order to the explain this problem we have to consider the following:
The current= charge/time; so
as the electrons move in the tungsten wire we have:
0.526 C/s= N electrons per second* charge of electron=
N electrons/s= 0.526/1.6*10^-19= 3.28 *10^18 electrons/s
Then, during 5 seconds will pass:
3.28 *10^18 electrons/s*5 5s= 1.64 *10^19 electrons
Answer:
1.64 x 10^19 electrons
Explanation:
The current is defined as I=ΔQ/Δt where ∆Q is the amount of charge flowing past a point in the filament. This charge is comprised of electrons that each carry charge of e = 1.602 × 10^-19 C. So ΔQ=Ne=IΔt and the number of electrons flowing through the filament in 5 s is N=IΔte=(0.526 A)(5 s)1.602×10^−19 C=1.64×10^19 electrons.
a) The large sphere has 3 times the mass of the small sphere
b) The final height at which small ball reach y = 4H
We must start this problem by calculating the speed with which the spheres reach the floor
As the spheres are released v₀ = 0
The two spheres arrive at the same speed to the floor.
The largest sphere clashes elastically so that with the floor it has a much higher mass, the sphere bounces with the same speed with which it arrived, the exit speed of the spheres
The big sphere goes up and the small one down, the two collide, let's form a system that contains the two spheres, let's use moment conservation
Let's call
Small sphere m₂ and
Large sphere m₁ and
Before crash
After the crash
The conservation of kinetic energy
Let's write the values
The solution to this system of equations is
The large sphere is labeled 1, we are asked for the mass so that = 0, let's clear the equation
The large sphere has to complete 3 times the mass of the sphere1 because it stops after the crash.
b) Let us calculate with the other equation the speed with which the sphere comes out2 (small)
In addition, we know that m₁ = 3 m₂
mt = 3m2 + m2
This is the rate of rising of sphere 2 (small. At the highest point, it zeroes velocity = 0
Thus
a) The large sphere has 3 times the mass of the small sphere
b) The final height at which small ball reach y = 4H
To know more about the Laws of collisions follow
Answer:
a) the large sphere has 3 times the mass of the small sphere
b) y = 4H
Explanation:
We must start this problem by calculating the speed with which the spheres reach the floor
vf² = vo² - 2g y
As the spheres are released v₀ = 0
vf² = - 2g H
vf = √ (2g H)
The two spheres arrive with the same speed to the floor.
The largest sphere clashes elastically so that with the floor it has a much higher mass, the sphere bounces with the same speed with which it arrived, the exit speed of the spheres
V₁₀ = √2gH
The big sphere goes up and the small one down, the two collide, let's form a system that contains the two spheres, let's use moment conservation
Let's call vh = √2gH
Small sphere m₂ and v₂o = - √2gH = -vh
Large sphere m₁ and v₁o = √ 2gh = vh
Before crash
p₀ = m₁ v₁₀ + m₂ v₂₀
After the crash
pf = m₁ v₁f + m₂ v₂f
po = pf
m₁ v₁₀ + m₂ v₂₀ = m₁ v₁f + m₂ v₂f
The conservation of kinetic energy
Ko = ½ m₁ v₁₀² + ½ m₂ v₂₀²
Kf = ½ m₁ v₁f² + ½ m₂ v₂f²
Ko = KF
½ m₁ v1₁₀² + ½ m₂ v₂₀² = ½ m₁ v₁f² + ½ m₂ v₂f²
Let's write the values
-m₁ vh + m₂ vh = m₁ v₁f + m₂ v₂f
m₁ vh² + m₂ vh² = m₁ v₁f² + m₂ v₂f²
The solution to this system of equations is
mt = m₁ + m₂
v1f = (m₁-m₂) / mt v₁₀ + 2m₂ / mt v₂
v₂f = 2m₁ /mt v₁₀ + (m₂-m₁) / mt v₂
The large sphere is labeled 1, we are asked for the mass so that v1f = 0, let's clear the equation
v₁f = (m₁-m₂) / mt v₁₀ + 2m₂ / mt v₂₀
0 = (m₁-m₂) / mt vh + 2 m₂ / mt (-vh)
(m₁-m₂) / mt vh = 2 m₂ / mt vh
(m₁-m₂) = 2m₂
m₁ = 3 m₂
The large sphere has to complete 3 times the mass of the sphere1 because it stops after the crash.
b) Let us calculate with the other equation the speed with which the sphere comes out2 (small)
v₂f = 2m₁ / mt v₁₀ + (m₂-m₁) / mt v₂₀
v₂f = 2 m₁ / mt vh + (m₂-m₁) mt (-vh)
In addition, we know that m₁ = 3 m₂
mt = 3m2 + m2
mt= 4m2
v₂f = 2 3m₂ / 4m₂ vh - (m₂-3m₂) 4m₂ vh
v₂f = 3/2 vh +1/2 vh
v₂f = 2 vh
v₂f = 2 √ 2gh
This is the rate of rise of sphere 2 (small. At the highest point its zero velocity vf = 0
V² = v₂f² - 2 g Y
0 = (2√2gh)² - 2gy
2gy = 4 (2gH)
y = 4H