b) 6.67x10-19hz
c) 3x108hz
d) 1.5hz
Show calculation
Answer:
1.5 x 10¹⁸hz
Explanation:
Given parameters:
Wavelength = 2 x 10⁻¹⁰m
Unknown:
Frequency = ?
Solution:
To find the frequency, use the expression below;
V = f x wavelength
V is the speed of light = 3 x 10⁸m/s
f is the frequency
Now;
Insert the parameters
3 x 10⁸ = 2 x 10⁻¹⁰ x frequency
Wavelength = = 1.5 x 10¹⁸hz
Answer:
V(peak voltage) is the highest voltage that the waveform will ever attain and the Vrms(root-mean-square) is the effective voltage of the total waveform representing the AC source.
Answer:
The kinetic coefficient of friction of the crate is 0.235.
Explanation:
As a first step, we need to construct a free body diagram for the crate, which is included below as attachment. Let supposed that forces exerted on the crate by both workers are in the positive direction. According to the Newton's First Law, a body is unable to change its state of motion when it is at rest or moves uniformly (at constant velocity). In consequence, magnitud of friction force must be equal to the sum of the two external forces. The equations of equilibrium of the crate are:
(Ec. 1)
(Ec. 2)
Where:
- Pushing force, measured in newtons.
- Tension, measured in newtons.
- Coefficient of kinetic friction, dimensionless.
- Normal force, measured in newtons.
- Weight of the crate, measured in newtons.
The system of equations is now reduced by algebraic means:
And we finally clear the coefficient of kinetic friction and apply the definition of weight:
If we know that , , and , then:
The kinetic coefficient of friction of the crate is 0.235.
The calculation of the coefficient of kinetic friction involves setting the total force exerted by the workers equal to the force of friction, as the crate moves at a constant speed. The coefficient of kinetic friction is then calculated by dividing the force of friction by the normal force, which is the weight of the crate. The coefficient of kinetic friction for the crate on the floor is approximately 0.235.
To calculate the coefficient of kinetic friction, we first must understand that the crate moves at a constant velocity, indicating that the net force acting on it is zero. Thus, the total force exerted by the workers (400 N + 290 N = 690 N) is equal to the force of friction acting in the opposite direction.
Since the frictional force (F) equals the normal force (N) times the coefficient of kinetic friction (μk), we can write the equation as F = μkN. Here, the normal force is the weight of the crate, determined by multiplying the mass (m) of the crate by gravity (g), i.e., N = mg = 300 kg * 9.8 m/s² = 2940 N.
Next, we rearrange the equation to solve for the coefficient of kinetic friction: μk = F / N. Substituting the known values (F=690 N, N=2940 N), we find: μk = 690 N / 2940 N = 0.2347. Thus, the coefficient of kinetic friction for the crate on the floor is approximately 0.235.
#SPJ3
Answer:
Explanation:
For a convex mirror, the value of its image distance and its focal length are negative.
using the mirror formula 1/f = 1/u+1/v
f is the focal length = Radius of curvature/2 = 0.560/2
f= 0.28m
u is the object distance = 10.6m
v is the position of the image = ?
On substitution;
1/0.28 = 1/10.6 + 1/-v
3.57 = 0.094 - 1/v
3.57 - 0.094 = -1/v
3.476 = -1/v
v = -1/3.476
v = -0.2877m
B) Since the image distance is negative, this means that the image is an upright and a virtual image. All Upright images has their image distance to be negative.
C) Magnification = Image distance/object distance
Magnification = 0.2877/10.6
Magnification = 0.0271
Friction is the resistance to motion of one object moving relative to another. The friction will be 7.77
According to the International Journal of Parallel, Emergent and Distributed Systems(opens in new tab), it is not treated as a fundamental force, like gravity or electromagnetism. Instead, scientists believe it is the result of the electromagnetic attraction between charged particles in two touching surfaces.
Scientists began piecing together the laws governing friction in the 1400s, according to the book Soil Mechanics(opens in new tab), but because the interactions are so complex.
F=μ*m, n=w which also means n=mg, 14.7=0.193*n, n=76.2, 76.2=m*9.8, m=7.77.
Therefore, Friction is the resistance to motion of one object moving relative to another. The friction will be 7.77.
To learn more about Friction, refer to the link:
#SPJ2
Answer:
7.77
Explanation:
F=μ*m
n=w which also means n=mg
14.7=0.193*n
n=76.2
76.2=m*9.8
m=7.77
Explanation:
Using table A-3, we will obtain the properties of saturated water as follows.
Hence, pressure is given as p = 4 bar.
= 2553.6 kJ/kg
At state 2, we will obtain the properties. In a closed rigid container, the specific volume will remain constant.
Also, the specific volume saturated vapor at state 1 and 2 becomes equal. So,
According to the table A-4, properties of superheated water vapor will obtain the internal energy for state 2 at and temperature so that it will fall in between range of pressure p = 5.0 bar and p = 7.0 bar.
Now, using interpolation we will find the internal energy as follows.
= 2963.2 - 2.005
= 2961.195 kJ/kg
Now, we will calculate the heat transfer in the system by applying the equation of energy balance as follows.
Q - W = ......... (1)
Since, the container is rigid so work will be equal to zero and the effects of both kinetic energy and potential energy can be ignored.
= 0
Now, equation will be as follows.
Q - W =
Q - 0 =
Q =
Now, we will obtain the heat transfer per unit mass as follows.
= (2961.195 - 2553.6)
= 407.595 kJ/kg
Thus, we can conclude that the heat transfer is 407.595 kJ/kg.
The heat transfer is 227.4 kJ per kg of water.
Water, initially saturated vapor at 4 bar, fills a closed, rigid container. The water is heated until its temperature is 360°C. To determine the heat transfer in kJ per kg of water, we need to calculate the heat absorbed by the water as it reaches 360°C.
Using the specific heat capacity of water (4,186 J/kg°C) and the change in temperature (360°C - 100°C), we can calculate the heat transfer:
Qw = mw * cw * AT = (1 kg) * (4186 J/kg°C) * (360°C - 100°C) = 227,440 J = 227.4 kJ
Therefore, the heat transfer is 227.4 kJ per kg of water.
Heat transfer is the process by which thermal energy moves from one object or substance to another due to a difference in temperature. This fundamental phenomenon occurs through three main mechanisms: conduction, convection, and radiation. Conduction involves the direct transfer of heat through a material, such as metal. Convection is the transfer of heat through the movement of fluids (liquids or gases). Radiation is the emission of electromagnetic waves carrying heat energy. Understanding heat transfer is essential in various fields, including physics, engineering, and environmental science, as it governs temperature regulation, climate dynamics, and the functioning of countless technological devices.
#SPJ3