Answer:
(c) 3P/5
Explanation:
The formula to calculate the power is:
where
W is the work done
T is the time required for the work to be done
In the second part of the problem, we have
Work done: 3W
Time interval: 5T
So the power required is
Answer:
The acceleration expressed in the new units is
Explanation:
To convert from to it is necessary to remember that there are 1000 meters in 1 kilometer and 3600 seconds in 1 hour:
Then by means of a rule of three it is get:
Hence, the units of meters and seconds will cancel. Notice the importance of square the ratio 3600s/1h, so that way they can match with the other units:
So the acceleration expressed in the new units is .
Give your answer in standard form.
Answer:
B. 1700 Hz, 5100 Hz
C. 3400 Hz, 6800 Hz
D. 3400 Hz, 10,200 Hz
Answer:
B. 1700 Hz, 5100 Hz
Explanation:
Parameters given:
Length of ear canal = 5.2cm = 0.052 m
Speed of sound in warm air = 350 m/s
The ear canal is analogous to a tube that has one open end and one closed end. The frequency of standing wave modes in such a tube is given as:
f(m) = m * (v/4L)
Where m is an odd integer;
v = velocity
L = length of the tube
Hence, the two lowest frequencies at which a dog will have increased sensitivity are f(1) and f(3).
f(1) = 1 * [350/(4*0.052)]
f(1) = 1682.69 Hz
Approximately, f(1) = 1700 Hz
f(3) = 3 * [350/(4*0.052)]
f(3) = 5048 Hz
Approximately, f(3) = 5100 Hz
A. Consult with a friend and get their feeback
B. Dispute the beliefs by asking if these are true and examining the evidence
C. Seek mental health counseling
D. It is just too hard so let's just forget it.
Answer:
i believe the answer is B
Explanation:
Seeking the right answer is the best thing to do
Answer:
k = 15.62 MN/m
Explanation:
Given:-
- The viscous damping constant, c = 1.8 KNs/m
- The floor oscillation magnitude, Yo = 3 mm
- The frequency of floor oscillation, f = 18 Hz.
- The combined weight of the grinding machine and the wheel, W = 4200 N
- Two springs of identical stiffness k are attached in parallel arrangement.
Constraints:-
- The stiffness k > 3.25 MN/m
- The grinding machine’s steady-state amplitude of oscillation to at most 10 mm. ( Xo ≤ 10 mm )
Find:-
What is the minimum required stiffness of each of the two springs as per the constraints given.
Solution:-
- The floor experiences some harmonic excitation due to the unbalanced engine running in the vicinity of the grinding wheel. The amplitude "Yo" and the frequency "f" of the floor excitation is given
- The floor is excited with a harmonic displacement of the form:
Where,
Yo : The amplitude of excitation = 3 mm
w : The excited frequency = 2*π*f = 2*π*18 = 36π
- The harmonic excitation of the floor takes the form:
- The equation of motion for the floor excitation of mass-spring-damper system is given as follows:
Where,
m: The combined mass of the rigid body ( wheel + grinding wheel body) c : The viscous damping coefficient
k_eq: The equivalent spring stiffness of the system ( parallel )
x : The absolute motion of mass ( free vibration + excitation )
- We will use the following substitutions to determine the general form of the equation of motion:
Where,
w_n: The natural frequency
p = ζ = damping ratio = c / cc , damping constant/critical constant
- The Equation of motion becomes:
- The steady solution of a damped mass-spring system is assumed to be take the form of harmonic excitation of floor i.e:
Where,
X_o : The amplitude of the steady-state vibration.
α: The phase angle ( α )
- The steady state solution is independent from system's initial conditions and only depends on the system parameters and the base excitation conditions.
- The general amplitude ( X_o ) for a damped system is given by the relation:
Where,
r = Frequency ratio =
- We will use the one of the constraints given to limit the amplitude of steady state oscillation ( Xo ≤ 10 mm ):
- We will use the expression for steady state amplitude of oscillation ( Xo ) and determine a function of frequency ratio ( r ) and damping ratio ( ζ ):
- Solve the inequality ( quadratic ):
- The equivalent stiffness of the system is due to the parallel arrangement of the identical springs:
- Therefore,
- The minimum stiffness of spring is minimum of the two values:
k = 15.62 MN/m