Two long ideal solenoids (with radii 20 mm and 30 mm, respectively) have the same number of turns of wire per unit length. The solenoid is mounted inside the larger, along a common axis. The magnetic field with in the inner solenoid is zero. The current in the inner solenoid must be: a. two-thirds the current in the outer solenoid
b. one-third the current in the outer solenoid
c. twice the current in the outer solenoid
d. half of the current in the outer solenoid
e. the same as the current in the outer solenoid

Answers

Answer 1
Answer:

Answer: The current in the inner solenoid is the same as the current in the outer solenoid.

The correct option is e

Explanation: Please see the attachment below


Related Questions

A boat can travel in still water at 56 m/s. If the boats sails directly across a river that flows at 126 m/s. What is the boats speed relative to the ground
The index of refraction for red light in water is 1.331, and that for blue light is 1.340. If a ray of white light enters the water at an angle of incidence of 83.00o , what are the underwater angles of refraction for the blue and red components of the light
Imagine that you drop an object of 10 kg, how much will be the acceleration andhow much force causes the acceleration?
Two bodies, one hot and the other cold kept in vacuum.what will happen to the tempreture of bodies after some time.
A 2100 g block is pushed by an external force against a spring (with a 22 N/cm spring constant) until the spring is compressed by 11 cm from its uncompressed length. The compressed spring and block rests at the bottom of an incline of 28◦ with the spring lying along the surface of the ramp.After all the external forces are removed (so the compressed spring releases the mass) how far D along the plane will the block move before coming to a stop? Answer in units of m.

A train travels 64 kilometers in 5hours and then 93 kilometers in 2hours. What is it’s average speed?

Answers

I believe the answer is about 22.43 kilometers per hour. However I am not 100% sure.

How I got this: first you add 64 and 93, then 5 and 2. That would leave you with the kilometers traveled (157) over the number of hours (7). You’d have to divide, which would leave you with an estimated 22.4285. Round to the nearest hundredth and you get 22.43 . Please correct me if I’m wrong!

A system of 1223 particles, each of which is either an electron or a proton, has a net charge of -5.328×10-17 C. How many protons are in this system (exactly)?

Answers

Answer:

Therefore the number of proton in the given system is 450.

Explanation:

Given that, a system has 1223 particles.

Let x number of proton be present in the system.

Then the number of electron is =(1223-x)

The charge of a proton is = 1.602×10⁻¹⁹ C

The charge of an electron = - 1.602×10⁻¹⁹ C

The charge of x protons is =( 1.6×10⁻¹⁹×x) C

The charge of (1223-x) electrons is = - 1.6×10⁻¹⁹ (1223-x) C

According to the problem,

(1.6×10⁻¹⁹×x) +{ - 1.6×10⁻¹⁹ (1223-x)}= -5.328×10⁻¹⁷

⇒1.6×10⁻¹⁹(x-1223+x)=-5.328×10⁻¹⁷

\Rightarrow (2x-1223)=(-5.328* 10^(-17))/(1.6* 10^(-19))

⇒2x-1223= -333

⇒2x= -333+1223

⇒2x=900

\Rightarrow x=(900)/(2)

⇒x=450

Therefore the number of proton is 450.

While a roofer is working on a roof that slants at 37.0 ∘∘ above the horizontal, he accidentally nudges his 92.0 NN toolbox, causing it to start sliding downward, starting from rest. If it starts 4.25 m from the lower edge of the roof, how fast will the toolbox be moving just as it reaches the edge of the roof if the kinetic friction force on it is 22.0 N?

Answers

Answer:

The speed is   v =8.17 m/s

Explanation:

From the question we are told that

      The angle of slant is  \theta = 37.0^o

       The weight of the toolbox is  W_t = 92.0N

       The mass of the toolbox is m = (92)/(9.8) = 9.286kg

       The start point is  d = 4.25m from lower edge of roof

        The kinetic frictional force is  F_f = 22.0N

Generally the net work done on this tool box can be mathematically represented as

      Net \ work done  =  Workdone \ due \ to \ Weight + Workdone \ due \ to \ Friction

The workdone due to weigh is  =    mgsin \theta * d

 The workdone due to friction is  = F_f \ cos\theta  *   d

Substituting this into the equation for net workdone  

                 W_(net) = mgsin\theta  * d + F_f  \ cos \theta *d

      Substituting values

                  W_(net)  =  92 * sin (37)  * 4.25 + 22 cos (37) * 4.25

                          = 309.98 J

 According to work energy theorem

             W_(net) = \Delta Kinetic \ Energy

              W_(net) = (1)/(2) m (v - u)^2

From the question we are told that it started from rest so  u = 0 m/s

              W_(net) = (1)/(2) * m v^2

Making v the subject

               v = \sqrt{(2 W_(net))/(m) }

Substituting value

              v = \sqrt{(2 * 309.98)/(9.286) }

             v =8.17 m/s

A remote controlled car is moving in a vacant parking lot. The velocity of the car as a function of time is given by v= [5.00 m/s – (0.0180 m/s3)t^2 ]i+[2.00 m/s + (0.550 m/s2)t ]j .a) What are ax(t) and ay(t), the x- and y- components of cars acceleration as a function of time?
b) What are the magnitude and direction of the velocity of the car at t= 8 sec?
c) What is the magnitude and direction of cars acceleration at t=8 sec

Answers

Maybe try A for your answer

Label the longitudinal wave

Answers

Answer:

???

Explanation:

The record for the world’s loudest burp is 109.9 dB, measured at a distance of 2.5 m from the burper. Assuming that this sound was emitted as a spherical wave, what was the power emitted by the burper during his record burp?

Answers

Answer:

Power of the source is 7.7 W

Explanation:

As we know that the sound level is measured as

L = 10 Log (I)/(I_o)

now we have

L = 109.0 dB

so we have

109.9 = 10 Log(I)/(10^(-12))

I = 0.098 W/m^2

now power of the source is given as

P = I(4\pi r^2)

P = 0.098(4\pi )(2.5^2)

P = 7.7 W