Answer:
B. Nonelectrolyte.
Explanation:
Nonelectrolytes do not dissociate into ions in solution, hence, nonelectrolyte solutions don't conduct electricity.
A non-electrolyte doesn’t conduct electric current even when it forms a solution.
Answer: Option B
Explanation:
Where electrolytes are defined as the compounds that can conduct electric current with mobile ions existing in its solution, non-electrolytes are the compounds that don’t behave the same either in the aqueous solution or in the molten state.
This is all because these compounds don’t produce mobile ions to flow from one electrode to the other and hence conduct electric flow in the solution. Sugar and ethanol are the best examples of non-electrolytes that don’t induce electric current even after getting dissolved in water.
Answer:
Acceleration=24.9ft^2/s^2
Angular acceleration=1.47rads/s
Explanation:
Note before the ladder is inclined at 30° to the horizontal with a length of 16ft
Hence angular velocity = 6/8=0.75rad/s
acceleration Ab=Aa +(Ab/a)+(Ab/a)t
4+0.75^2*16+a*16
0=0.75^2*16cos30°-a*16sin30°---1
Ab=0+0.75^2sin30°+a*16cos30°----2
Solving equation 1
(0.75^2*16cos30/16sin30)=angular acceleration=a=1.47rad/s
Also from equation 2
Ab=0.75^2*16sin30+1.47*16cos30=24.9ft^2/s^2
Explanation:
The classic model of a black body made predictions of the emission at small wavelengths in open contradiction with what was observed experimentally, this led Planck to develop a heuristic model. This assumption allowed Planck to develop a formula for the entire spectrum of radiation emitted by a black body, which matched the data.
solution:
Given Information:
time = Δt = 0.0250 seconds
Radius = r = 5 cm = 0.05 m
Change in Magnetic field = ΔB = (0.300 - 0.200) T
Number of turns = N = 1
Required Information:
Magnitude of induced emf = ξ = ?
Answer:
Magnitude of induced emf = ξ = 3.141x10⁻² V
Explanation:
The EMF induced in a circular loop of wire in a changing magnetic field is given by
ξ = -NΔΦ/Δt
Where change in flux ΔΦ is given by
ΔΦ = ΔBA
ΔΦ = ΔBπr²
ΔΦ = (0.300 - 0.200)*π*(0.05)²
ΔΦ = 7.854x10⁻⁴ T.m²
ξ = -NΔΦ/Δt
ξ = -(1*7.854x10⁻⁴)/0.0250
ξ = -3.141x10⁻² V
The negative sign is due to Lenz law.
Answer:
-0.0314 V
Explanation:
Parameters given:
Initial magnetic field, Bini = 200 mT = 0.2T
Final magnetic field, Bfin = 300mT = 0.3 T
Number of turns, N = 1
Radius, r = 5 cm = 0.05 m
Time, t = 0.025 secs
Induced EMF is given as:
EMF = [-(Bfin - Bini) * N * pi * r²] / t
EMF = [-(0.3 - 0.2) * 1 * 3.142 * 0.05²] / 0.025
EMF = (-0.1 * 3.142 * 0.0025) / 0.025
EMF = -0.0314 V
b.) the buoyant force in the water is larger than that in mercury
c.) the buoyant force in the water is zero and that in mercury is non - zero
d.) the buoyant force in the water is equal to that in mercury
e.) no conclusion can be made about the respective values of the buoyant forces
Answer: a)
Explanation:
The buoyant force, as stated by Archimedes’ principle, is equal to the weight of the liquid that occupies the same volumen as the submerged object, as follows:
Fb = δ.V.g
If this force is larger than the weight of the object (that means that the fluid is denser than the solid), the object floats, which is the case for silver and mercury.
Instead, silver density is larger than water density, which explains why the pure silver ingot sinks.
Finally, as mercury is denser than water, we conclude that for a same object, the buoyant force in mercury is larger than in water (exactly 13.6 times greater).
Write the velocity vectors in component form.
• initial velocity:
v₁ = 4 m/s at 45º N of E
v₁ = (4 m/s) (cos(45º) i + sin(45º) j)
v₁ ≈ (2.83 m/s) i + (2.83 m/s) j
• final velocity:
v₂ = 4 m/s at 10º N of E
v₂ = (4 m/s) (cos(10º) i + sin(10º) j)
v₂ ≈ (3.94 m/s) i + (0.695 m/s) j
The average acceleration over this 3-second interval is then
a = (v₂ - v₁) / (3 s)
a ≈ (0.370 m/s²) + (-0.711 m/s²)
with magnitude
||a|| = √[(0.370 m/s²)² + (-0.711 m/s²)²] ≈ 0.802 m/s²
and direction θ such that
tan(θ) = (-0.711 m/s²) / (0.370 m/s²) ≈ -1.92
→ θ ≈ -62.5º
which corresponds to an angle of about 62.5º S of E, or 27.5º E of S. To use the notation in the question, you could say it's E 62.5º S or S 27.5º E.