Answer:
Option B
Explanation:
As per the Lenz’s law of electromagnetism the current induced in a conductor due to any change has a tendency to oppose the change which is causing this induces current.
Thus, when a constant magnetic field with an electric circuit is varied, it produces and induced current which flow in a direction such that its sets a magnetic field that tries to restore the flux
Hence, option B is correct
Answer:
425.1 W
Explanation:
We are given;
Counter mass of elevator; m_c = 940 kg
Cab mass of elevator; m_d = 1200 kg
Distance from rest upwards; d = 35 m
Time to cover distance; t = 3.5 min
Now, this elevator will have 3 forces acting on it namely;
Force due to the counter weight of the elevator; F_c
Force due to the cab weight on the elevator; F_d
Force exerted by the motor; F_m
Now, from Newton's 2nd law of motion,
The force exerted by the motor on the elevator can be given by the relationship;
F_m = F_d - F_c
Now,
F_d = m_d × g
F_d = 1200 × 9.81
F_d = 11772 N
F_c = m_c × g
F_c = 940 × 9.81
F_c = 9221.4 N
Thus;
F_m = 11772 - 9221.4
F_m = 2550.6 N
Now, the average power required of the force the motor exerts on the cab via the cable is given by;
P_m = F_m × v
Where v is the velocity of the elevator.
The velocity is calculated from;
v = distance/time
v = 35/3.5
v = 10 m/min
Converting to m/s gives;
v = 10/60 m/s = 1/6 m/s
Thus;
P_m = 2550.6 × 1/6
P_m = 425.1 W
B) 5 J
C) 50 J
D) 1 J
E) 10 J
Answer:
option C
Explanation:
given,
Force on the object = 10 N
distance of push = 5 m
Work done = ?
we know,
work done is equal to Force into displacement.
W = F . s
W = 10 x 5
W = 50 J
Work done by the object when 10 N force is applied is equal to 50 J
Hence, the correct answer is option C
The work done on an object when a force of 10 N pushes it 5 m is 50 Joules, calculated by multiplying the force and the displacement. So, the correct option is C.
The question is asking about work, which in physics is the result of a force causing a displacement. The formula for work is defined as the product of the force (in Newtons) and the displacement (in meters) the force causes. If a force of 10 N pushes an object a distance of 5 m, the work done is calculated by multiplying the force and the displacement (10 N * 5 m), yielding 50 Joules of work.
Therefore, the correct answer is 50 J (C).
#SPJ6
You draw 3 circles around the stations with the size of the circle equal to the distance from the earthquake. Then you simply find where the edge circles all overlap.
Answer
given,
Tension of string is F
velocity is increased and the radius is not changed.
the string makes two complete revolutions every second
consider the centrifugal force acting on the stone
=
now centrifugal force is balanced by tension
T =
From the above expression we can clearly see that tension is directly proportional to velocity and inversely proportional to radius.
When radius is not changing velocity is increasing means tension will also increase in the string.
Answer:
The two waves will add vectorially to produce a small amplitude wave in a valley phase.
Explanation:
The two waves will add vectorially to produce a small amplitude wave in a valley phase. This is because the amplitudes of the waves are slightly different and in opposite directions. When wave 1 cancels out all of wave 2, the resultant wave would be the slight difference between both waves, and it would be in the direction of wave 1 which is a valley phase.
We are given:
The tuning fork vibrates at 15660 oscillations per minute
Period of one back-and forth movement:
the given data can be rewritten as:
1 minute / 15660 oscillations
60 seconds / 15660 oscillations (1 minute = 60 seconds)
dividing the values
0.0038 seconds / Oscillation
Therefore, one back and forth vibration takes 0.0038 seconds