"The equation can be used to calculate the power absorbed by any surface" statement concerning the Stefan-Boltzmann equation is correct.
Answer: Option A
Explanation:
According to Stefan Boltzmann equation, the power radiated by black body radiation source is directly proportionate to the fourth power of temperature of the source. So the radiation transferred is absorbed by another surface and that absorbed power will also be equal to the fourth power of the temperature. So the equation describes the relation of net radiation loss with the change in temperature from hotter temperature to cooler temperature surface.
So this law is application for calculating power absorbed by any surface.
B. 1700 Hz, 5100 Hz
C. 3400 Hz, 6800 Hz
D. 3400 Hz, 10,200 Hz
Answer:
B. 1700 Hz, 5100 Hz
Explanation:
Parameters given:
Length of ear canal = 5.2cm = 0.052 m
Speed of sound in warm air = 350 m/s
The ear canal is analogous to a tube that has one open end and one closed end. The frequency of standing wave modes in such a tube is given as:
f(m) = m * (v/4L)
Where m is an odd integer;
v = velocity
L = length of the tube
Hence, the two lowest frequencies at which a dog will have increased sensitivity are f(1) and f(3).
f(1) = 1 * [350/(4*0.052)]
f(1) = 1682.69 Hz
Approximately, f(1) = 1700 Hz
f(3) = 3 * [350/(4*0.052)]
f(3) = 5048 Hz
Approximately, f(3) = 5100 Hz
Answer: 1.11 x 10⁸ Pa
Explanation:
At any deep, the absolute pressure is the same for all points located at the same level, and can be expressed as follows:
p = p₀ + δ. g . h, where p₀ = atmospheric pressure = 101, 325 Pa
Replacing by the values, we get:
p= 101,325 Pa + 1025 Kg/m³ . 9.8 m/s². 11,033 m = 1.11 x 10⁸ Pa.
Answer:
75
Explanation:
just took it e2020
Answer:
60%
Explanation:
efficiency= useful/input x 100%,
Here, kinetic energy is useful for food processor (i.e. spinning blades)
600J/1000J=60%
Answer:
11405Volt
Explanation:
To solve this problem it is necessary to use the concept related to induced voltage or electromotive force measured in volts. Through this force it is possible to maintain a potential difference between two points in an open circuit or to produce an electric current in a closed circuit.
The equation that allows the calculation of this voltage is given by,
Where
B = Magnetic field
A= Area
N = Number of loops
= Angular velocity
Our values previously given are:
We need convert the angular velocity to international system, then
Applying the equation for emf, we replace the values and we will obtain the value.
Answer:
1) I_ pendulum = 2.3159 kg m², 2) I_pendulum = 24.683 kg m²
Explanation:
In this exercise we are asked to calculate the moment of inertia of a physical pendulum, let's start by calculating the center of mass of each elements of the pendulum and then the center of mass of the pendulum
Sphere
They indicate the density of the sphere roh = 37800 kg / m³ and its radius
r = 5 cm = 0.05 m
we use the definition of density
ρ = M / V
M = ρ V
the volume of a sphere is
V = 4/3 π r³
we substitute
M = ρ 4/3 π r³
we calculate
M = 37800 4/3 π 0.05³
M = 19,792 kg
Bar
the density is ρ = 32800 kg / m³ and its dimensions are 1 m,
0.8 cm = 0.0008 m and 4cm = 0.04 m
The volume of the bar is
V = l w h
m = ρ l w h
we calculate
m = 32800 (1 0.008 0.04)
m = 10.496 kg
Now we can calculate the center of mass of the pendulum, we use that the center of mass of the sphere is its geometric center, that is, its center and the center of mass of the bar is where the diagonals intersect, in this case it is a very bar. long and narrow, whereby the center of mass is about half the length. It's mass scepter of the pendulum is
r_cm = 1 / M (M r_sphere + m r_bar)
M = 19,792 + 10,496 = 30,288 kg
r_cm = 1 / 30,288 (10,496 0.5 + 19.792 (1 + 0.05))
r_cm = 1 / 30,288 (5,248 + 20,7816)
r_cm = 0.859 m
This is the center of mass of the pendulum.
1) Now we can calculate the moment of inertia with respect to this center of mass, for this we can use the theorem of parallel axes and that the moments of inertia of the bodies are:
Sphere I = 2/5 M r2
Bar I = 1/12 m L2
parallel axes theorem
I = I_cm + m D²
where m is the mass of the body and D is the distance from the body to the axis of rotation
Sphere
m = 19,792 ka
the distance D is
D = 1.05 -0.85
D = 0.2 m
we calculate
I_sphere = 2/5 19.792 0.05 2 + 19.792 0.2 2 = 0.019792 +0.79168
I_sphere = 0.811472 kg m²
Bar
m = 10.496 kg
distance D
D = 0.85 - 0.5
D = 0.35 m
I_bar = 1/12 10.496 0.5 2 + 10.496 0.35 2 = 0.2186 + 1.28576
I_bar = 1.5044 kg m²
The moment of inertia is a scalar quantity whereby the moment of inertia of the body is the sum of the moment of the parts
I_pendulum = I_sphere + I_bar
I_pendulum = 0.811472 +1.5044
I_ pendulum = 2.3159 kg m²
this is the moment of inertia of the pendulum with respect to its center of mass located at r = 0.85 m
2) The moment is requested with respect to the pivot point at r = 0 m
Sphere
D = 1.05 m
I_sphere = 2/5 M r2 + M D2
I_sphere = 2/5 19.792 0.05 2 + 19.792 1.05 2 = 0.019792 +21.82
I_sphere = 21.84 kg m²
Bar
D = 0.5 m
I_bar = 1/12 10.496 0.5 2 + 10.496 0.5 2 = 0.21866 + 2.624
I_bar = 2,84266 kg m 2
The pendulum moment of inertia is
I_pendulum = 21.84 +2.843
I_pendulum = 24.683 kg m²
This moment of inertia is about the turning point at r = 0 m
Answer:
The time for final 15 cm of the jump equals 0.1423 seconds.
Explanation:
The initial velocity required by the basketball player to be able to jump 76 cm can be found using the third equation of kinematics as
where
'v' is the final velocity of the player
'u' is the initial velocity of the player
'a' is acceleration due to gravity
's' is the height the player jumps
Since the final velocity at the maximum height should be 0 thus applying the values in the above equation we get
Now the veocity of the palyer after he cover'sthe initial 61 cm of his journey can be similarly found as
Thus the time for the final 15 cm of the jump can be found by the first equation of kinematics as
where symbols have the usual meaning
Applying the given values we get