Answer:
Explanation:
The wavelength of the photons emitted due to an atomic electron transition in a hydrogen atom, is given by the Rydberg formula:
Here is the Rydberg constant for hydrogen and are the lower and higher quantum number for the energy levels of the atomic electron transition, respectively. Replacing the given values and solving for
The given situation is illustrated below. A particle is released and given a quick push. As a result, it acquires a speed v. Eventually, this particle ends up at the center of the original square and is momentarily at rest. If the mass of this particle is m, the initial speed of the particle is
To solve the problem, we need to apply the law of conservation of energy, which states that energy can neither be created nor destroyed; it can only be transformed from one form to another.
Initial potential energy = Final kinetic energy
The initial potential energy of the particle is given by
U = qV
where V is the potential difference between the corner and the center of the square.
At the center of the square, the potential energy is zero.
The final kinetic energy of the particle is given by
K = (1/2) mv^2
where m is the mass of the particle and v is its final velocity.
Since the particle is momentarily at rest at the center of the square, its final kinetic energy is zero.
Therefore, we have
qV = (1/2) mv^2
Solving for v, we get
v =
for such more question on speed
#SPJ11
Answer:
m2=3.2722lbm/s
Explanation:
Hello!
To solve this problem follow the steps below
1. Find water densities and entlapies in all states using thermodynamic tables.
note Through laboratory tests, thermodynamic tables were developed, which allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy, etc.)
through prior knowledge of two other properties, such as pressure and temperature.
D1=Density(Water;T=50;x=0)=62.41 lbm/ft^3
D2=Density(Water;T=120;x=0)=61.71 lbm/ft^3
D3=Density(Water;T=80;x=0)=62.21 lbm/ft^3
h1=Enthalpy(Water;T=50;x=0)=18.05 BTU/lbm
h2=Enthalpy(Water;T=120;x=0)=88 BTU/lbm
h3=Enthalpy(Water;T=80;x=0)=48.03 BTU/lbm
2. uses the continuity equation that states that the mass flow that enters a system is the same as the one that must exit
m1+m2=m3
3. uses the first law of thermodynamics that states that all the flow energy entering a system is the same that must come out
m1h1+m2h2=m3h3
18.05(m1)+88(m2)=48.03(m3)
divide both sides of the equation by 48.03
0.376(m1)+1.832(m2)=m3
4. Subtract the equations obtained in steps 3 and 4
m1 + m2 = m3
-
0.376m1 + 1.832(m2) =m3
--------------------------------------------
0.624m1-0.832m2=0
solving for m2
(0.624/0.832)m1=m2
0.75m1=m2
5. Mass flow is the product of density by velocity across the cross-sectional area
m1=(D1)(A)(v1)
internal Diameter for 2" Sch 40=2.067in=0.17225ft
m1=(62.41 lbm/ft^3)(0.0233ft^2)(3ft/S)=4.3629lbm/s
6.use the equation from step 4 to find the mass flow in 2
0.75m1=m2
0.75(4.3629)=m2
m2=3.2722lbm/s
Answer:
The temperature of silver at this given resistivity is 2971.1 ⁰C
Explanation:
The resistivity of silver is calculated as follows;
where;
Rt is the resistivity of silver at the given temperature
Ro is the resistivity of silver at room temperature
α is the temperature coefficient of resistance
To is the room temperature
T is the temperature at which the resistivity of silver will be two times the resistivity of iron at room temperature
Resistivity of iron at room temperature = 9.71 x 10⁻⁸ ohm.m
When silver's resistivity becomes 2 times the resistivity of iron, we will have the following equations;
Therefore, the temperature of silver at this given resistivity is 2971.1 ⁰C
b. Find the wavelength of the final note.
c. Assume the choir sings the melody with a uniform sound level of 70.0 dB. Find the pressure amplitude of the initial note.
d. Find the pressure amplitude of the final note.
e. Find the displacement amplitude of the initial note.
f. Find the displacement amplitude of the final note.
Answer:
Detailed step wise solution is attached below
Explanation:
(a) wavelength of the initial note 2.34 meters
(b) wavelength of the final note 0.389 meters
(d) pressure amplitude of the final note 0.09 Pa
(e) displacement amplitude of the initial note 4.78*10^(-7) meters
(f) displacement amplitude of the final note 3.95*10^(-8) meters
The distance the putty-block system compress the spring is 0.15 meter.
Given the following data:
To determine how far (distance) the putty-block system compress the spring:
First of all, we would solver for the initialmomentum of the putty.
Next, we would apply the law of conservation of momentum to find the final velocity of the putty-block system:
Velocity, V = 0.94 m/s
To find the compression distance, we would apply the law of conservation of energy:
x = 0.15 meter
Read more: brainly.com/question/14621920
Answer:
Explanation:
Force constant of spring K = 21 N /m
we shall find the common velocity of putty-block system from law of conservation of momentum .
Initial momentum of putty
= 5.3 x 10⁻² x 8.97
= 47.54 x 10⁻² kg m/s
If common velocity after collision be V
47.54 x 10⁻² = ( 5.3x 10⁻² + .454) x V
V = .937 m/s
If x be compression on hitting the putty
1/2 k x² = 1/2 m V²
21 x² = ( 5.3x 10⁻² + .454) x .937²
x² = .0212
x = .1456 m
14.56 cm