Explanation:
Following are two interactions that are generally involved when we use a TV remote control to change the channel :
1. Figure touches remote buttons, and its a short range interaction.
2. Now remote sends signal to Television, this is a long range interaction.
The interactions of a TV remote and the TV involve short-range infrared communication, while the TV receives signals from long-range electromagnetic waves broadcasted for channels in frequency ranges for VHF and UHF.
When you use a TV remote control to change the channel, two main interactions are involved. The first interaction is the infrared communication between the remote and the TV, which is a form of electromagnetic radiation. Infrared signals require a direct line of sight, operating over a relatively short range. On the other hand, the TV itself receives broadcast signals through antennas that capture electromagnetic waves broadcasted over a long range - these signals can be VHF or UHF TV channels.
Additionally, the TV channels are broadcasted on frequencies ranging from 54 to 88 MHz and 174 to 222 MHz for VHF, while UHF channels utilize frequencies from 470 to 1000 MHz. These signals are sent over a significant distance to your TV’s antenna, showing that television broadcast interaction is long range. These broadcast signals are part of electromagnetic spectrum and carry a large range of frequencies due to the variety of content (audio and visual information) that needs to be transmitted.
Answer:
True
Explanation:
This is a representation of Gauss law.
Gauss’s law does hold for moving charges, and in this respect Gauss’s law is more general than Coulomb’s law. In words, Gauss’s law states that: The net outward normal electric flux through any closed surface is proportional to the total electric charge enclosed within that closed surface. The law can be expressed mathematically using vector calculus in integral form and differential form, both are equivalent since they are related by the divergence theorem, also called Gauss’s theorem.
Answer:
about 14.7°
Explanation:
The formula for the angle of the first minimum is ...
sin(θ) = λ/a
where θ is the angle relative to the door centerline, λ is the wavelength of the sound, and "a" is the width of the door.
The wavelength of the sound is the speed of sound divided by the frequency:
λ = (340 m/s)/(1300 Hz) ≈ 0.261538 m
Then the angle of interest is ...
θ = arcsin(0.261538/1.03) ≈ 14.7°
At an angle of about 14.7°, someone outside the room will hear no sound.
The total work done in moving an alpha particle from the center to the side of a square with electrons at its corners involves finding the potential energy change, which can be calculated using the charges, distances, and Coulomb's constant.
The question deals with the fundamental concepts of electrostatics and the energy associated with moving charges in an electric field. Given the aforementioned question, we are required to find the work done moving an alpha particle (a helium nucleus, having a charge of +2e) from the center of a square to one of its sides, with electrons (each having a charge of -e) being situated at its corners.
To determine the work done, we must consider the potential energy changes resulting from moving the alpha particle. The potential energy associated with two point charges is given by the formula: U = k*q1*q2/r, where q1 and q2 are charges, r is the distance between them, and k is Coulomb's constant.
First, we calculate the potential energy at the center due to all four electrons then find the potential energy at the midpoint of the side. The work done is the difference between these two potential energies. As the electrons are all at an equal distance from the alpha particle (in the center and on the side), the calculations would involve plugging in the values for the charge of an electron, the charge of an alpha particle, the given distance values, and Coulomb's constant into the aforementioned formula.
#SPJ2
The work required to move the alpha particle from the midpoint to the midpoint of one of the side of the square with four electrons at its corners would be zero as the net electric field at the midpoint due to the electrons is zero.
The subject of this question pertains to the concept of electrostatics and potential energy in physics. In this scenario, the alpha particle is initially at the midpoint of a square with four electrons at its corners. As per Coulomb's Law, the electrostatic force between two charges is inversely proportional to the square of the distance between them.
Since the alpha particle placed in the center of the square and four electrons at the corners form a symmetrical system, the net force and hence the net electric field at the midpoint due to the electrons is zero. Thus, no work would be required to move the alpha particle to the midpoint of one of the sides of the square as work done is calculated by the formula W = F x d x cos(θ), where F is force, d is the displacement, and θ is the angle between the force and displacement. Since F is equal to zero, the work done will also be zero.
#SPJ2
Answer:
a) W = 25.872 J
b) - 35.28 J
c) - 9.408
Explanation:
a) The amount of work done by the force of gravity on the ball = Change in potential energy between the two vertical points = - mg (H₂ - H₁)
F = - mg (gravity is acting downwards)
F = - 0.6 × 9.8 = - 5.88 N
(H₂ - H₁) = (1.6 - 6) = - 4.4 m
W = (-5.88)(-4.4) = 25.872 J
b) Gravitational-potential energy of the ball when it was released relative to the ground = (- mg) H₁ = (- 0.6 × 9.8) × 6 = - 35.28 J
c) Gravitational-potential energy of the ball when it is caught relative to the ground = (-mg)(H₂) = -0.6 × 9.8 × 1.6 = - 9.408 J
Answer: 132.02 J
Explanation:
By definition, the kinetic energy is written as follows:
KE = 1/2 m v²
In our question, we know from the question, the following information:
m = 0.1434 Kg
v= 42.91 m/s
Replacing in the equation for KE, we have:
KE = 1/2 . 0.1434 Kg. (42.91)² m²/s² ⇒ KE = 132.02 N. m = 132.02 J
A. sideways
B. up and down
C. back and forth
D. all of the above
Answer: D i am pretty sure
Explanation:
Answer:
all
Explanation: