b) 6.67x10-19hz
c) 3x108hz
d) 1.5hz
Show calculation
Answer:
1.5 x 10¹⁸hz
Explanation:
Given parameters:
Wavelength = 2 x 10⁻¹⁰m
Unknown:
Frequency = ?
Solution:
To find the frequency, use the expression below;
V = f x wavelength
V is the speed of light = 3 x 10⁸m/s
f is the frequency
Now;
Insert the parameters
3 x 10⁸ = 2 x 10⁻¹⁰ x frequency
Wavelength = = 1.5 x 10¹⁸hz
Answer:
V1 = -3.260 m/s, V2 = 1.303 m/s
Explanation:
Let mass of the left glider m1 = 0.157 kg and velocity v1 = 0.850 m/s
mass of the right glider m2 = 0.306 Kg and v2 = -2.26 m/s (-ve sign mean it is opposite to direction of left glider)
To Find: Final Velocity of Left Glider is V1=? m/s and Velocity of right Glider is V2 =? m/s (After Collision)
from law of conservation of momentum and energy we deduce a formula:
V1 = (m1-m2) v1 /(m1+m2) + 2 m2 v2/(m1+m2)
V1 = (0.157 kg - 0.306 Kg) × 0.850 m/s / (0.157 kg + 0.306 Kg) + 2 ×0.306 kg × -2.26 m/s / (0.157 kg + 0.306 Kg)
V1 = -0.273 -2.987
V1 = -3.260 m/s
and V2 Formula
V2 = (m2-m1) v2/(m1+m2) + 2 m1 v1/(m1+m2)
V2 = (0.157 kg - 0.306 Kg) × -2.26 m/s / (0.157 kg + 0.306 Kg) + 2 ×0.157 kg × 0.850 m/s / (0.157 kg + 0.306 Kg)
V2 = 0.727 + 0.576
V2 = 1.303 m/s
-0.149, 0.463
Answer:
The wavelength of the wave is 1 m
Explanation:
Given;
mass of the string, m = 20 g = 0.02 kg
length of the string, L = 3.2 m
tension on the string, T = 2.5 N
the frequency of the wave, f = 20 Hz
The velocity of the wave is given by;
where;
μ is mass per unit length = 0.02 kg / 3.2 m
μ = 6.25 x 10⁻³ kg/m
The wavelength of the wave is given by;
λ = v / f
λ = (20 m/s )/ (20 Hz)
λ = 1 m
Therefore, the wavelength of the wave is 1 m
Answer:
doubling the size of the tax more than doubles the deadweight loss while less than doubles the revenue generated
Explanation:
(a)
The quantity of rooms rented before tax, Q1 = 1000 rooms.
The quantity of rooms rented after the imposition of tax Q2 = 900 rooms.
Size of the tax = $10
Price paid by buyer = $108
Price received by seller = $98
Deadweight loss = 1/2 x (Q2 — Q1) x (size of the tax)
Deadweight loss = 1/2 x (1000 — 900) x ($10) = $500
Tax revenue generated = size of tax * (Q2) = $10 x (900) = $9000
b)
The quantity of rooms rented before tax, Q1 = 1000 rooms
The quantity of rooms rented after the imposition of tax, Q2 = 800 rooms Size of the tax = $20
Price paid by buyer = $116
Price received by seller = $96
Deadweight loss = 1/2 x (Q2 — Q1) x (size of the tax)
New Deadweight loss = 1/2 x (1000 — 800) x ($20) = $2000
Thus, dead weight loss quadruples post doubling the size of tax. New Tax revenue generated = size of tax x (Q2) = $20 x (800) = $16000 Thus, revenue generated less than doubles post doubling the size of tax.
Answer:
y = 80.2 mille
Explanation:
The minimum size of an object that can be seen is determined by the diffraction phenomenon, if we use the Rayleigh criterion that establishes that two objects can be distinguished without the maximum diffraction of a body coincides with the minimum of the other body, therefore so much for the pupil of the eye that it is a circular opening
θ = 1.22 λ/ d
in a normal eye the diameter of the pupils of d = 2 mm = 0.002 m, suppose the wavelength of maximum sensitivity of the eye λ = 550 nm = 550 10⁻⁹ m
θ = 1.22 550 10⁻⁹ / 0.002
θ = 3.355 10⁻⁴ rad
Let's use trigonometry to find the distance supported by this angle, the distance from the moon to the Earth is L = 238900 mille = 2.38900 10⁵ mi
tan θ = y / L
y = L tan θ
y = 2,389 10⁵ tan 3,355 10⁻⁴
y = 8.02 10¹ mi
y = 80.2 mille
This is the smallest size of an object seen directly by the eye
An individual with 20/20 vision can observe the moon from a maximum distance of around 6200 km or 3850 miles. Beyond this distance, it might be difficult to distinguish the moon from other celestial objects without using a telescope. The use of a telescope can expand this range significantly.
The detailed observation of a lunar eclipsed, when viewed without any form of optical aid like a telescope, is contingent on many factors, one of which is the human eye's angular resolution—the eye's ability to differentiate between two separate points of light. For an average human eye with 20/20 vision, the angular resolution is approximately 0.02 degrees.
To calculate the maximum distance at which the moon could be observed clearly with the eye, the formula for small angle approximation can be used, which in this context is: Distance = Size / Angle = (2159.14 miles) / (0.02 degrees in radians). This calculates to a distance of approximately 6200 km or 3850 miles.
Beyond this distance, distinguishing the moon from other celestial bodies might be challenging using just the eye. Utilizing a high-powered telescope would significantly extend this range by magnifying the image, allowing clearer detail over much greater distances.
#SPJ3