The height at which the ball goes for the given parameters is; 0.827 m
We are given;
distance between the metal plates; d = 3.1 m
mass of glass; m = 1.1g = 0.0011 kg
charge on the glass; q = 4.7 nC = 4.7 × 10⁻⁹ C
speed of the glass ball; v = 4.8 m/s
voltage of the ceiling; V = +3.0 × 10⁶ V
The repulsive force experienced by the ball is gotten from the formula;
F = qV/d
|F| = (4.7 × 10⁻⁹ × 3 × 10⁶)/3.1
|F| = 4.548 × 10⁻³ N
F = -4.548 × 10⁻³ N (negative because it is repulsive force)
The net horizontal force experienced by the ball is;
F_net = F - mg
F_net = (-4.548 × 10⁻³) - (0.0011 × 9.8)
F_net = -15.328 × 10⁻³ N
To get the height of the ball, we will use the formula;
F_net * h = ¹/₂mv²
h = (¹/₂ * 0.0011 * 4.8²)/(15.328 × 10⁻³)
We took the absolute value of F_net, hence it is not negative
h = 0.827 m
Read more about height of ball at; brainly.com/question/12446886
Answer:
The ball traveled 0.827 m
Explanation:
Given;
distance between the metal plates of the room, d = 3.1 m
mass of the glass, m = 1.1g
charge on the glass, q = 4.7 nC
speed of the glass ball, v = 4.8 m/s
voltage of the ceiling, V = +3.0 x 10⁶ V
The repulsive force experienced by the ball when shot to the ceiling with positive voltage, can be calculated using Coulomb's law;
F = qV/d
|F| = (4.7 x 10⁻⁹ x 3 x 10⁶) / (3.1)
|F| = 4.548 x 10⁻³ N
F = - 4.548 x 10⁻³ N
The net horizontal force experienced by this ball is;
The work done between the ends of the plate is equal to product of the magnitude of net force on the ball and the distance traveled by the ball.
W = K.E
Therefore, the ball traveled 0.827 m
Answer:
3.65 x mass
Explanation:
Given parameters:
Time = 20s
Initial velocity = 0m/s
Final velocity = 73m/s
Unknown:
Force the ball experience = ?
Solution:
To solve this problem, we apply the equation from newton's second law of motion:
F = m
m is the mass
v is the final velocity
u is the initial velocity
t is the time taken
So;
F = m ( ) = 3.65 x mass
To calculate the force experienced by the ball to accelerate from rest to 73 m/s, use Newton's second law of motion.
To calculate the force experienced by the ball to accelerate from rest to 73 m/s, we can use Newton's second law of motion, which states that force equals mass times acceleration (F = m * a).
Since the ball starts from rest, its initial velocity (vi) is 0 m/s. The final velocity (vf) is 73 m/s. The time (t) taken for the impact is given as 2 x 10 seconds. So, the acceleration (a) can be calculated using the formula a = (vf - vi) / t.
Substituting the given values into the equation, we have a = (73 - 0) / (2 x 10) = 3.65 m/s^2.
Now, we can find the force (F) using the formula F = m * a. If the mass of the ball is known, we can substitute it into the equation to find the force experienced by the ball.
#SPJ3
Answer:
1.2 s
Explanation:
Given:
v₀ = 8.0 m/s
v = -4.0 m/s
a = -10 m/s²
Find: t
v = at + v₀
(-4.0 m/s) = (-10 m/s²) t + (8.0 m/s)
t = 1.2 s
(10 Points)
increases
decreases
a speed of 50kmh than it
would at a
speed of 6okmh?
Answer:
2hr much longer
Explanation:
Given parameters
Distance = 600km
Speed 1 = 50km/h
Speed 2 = 60km/h
Unknown:
How much longer will it take to travel a distance = ?
Solution:
Speed is the distance divided by time;
Speed =
Now;
Time taken =
Time 1;
=
= 12hr
Time 2;
=
= 10hr
To find how much more time;
Time 1 will take 12hr - 10hr, 2hr much longer to travel the distance at that rate.
The pressure everywhere increases by the same amount.
The pressure everywhere decreases to conserve total pressure.
Answer:
option C
Explanation:
the correct answer is option C
When in a confined fluid the pressure is increased in one part than the pressure will equally distribute in the whole system.
According to Pascal's law when pressure is increased in the confined system then the pressure will equally transfer in the whole system.
This law's application is used in machines like hydraulic jacks.
Answer: i think you should place it on the red line
Explanation:
hope this helps
and need brainliest