Answer:
d
Explanation:
Pressure of the fluid in any container is a function of density of the fluid in the container, and depth of the fluid.
The static pressure of fluid in a container with depth h is given by:
P = p * g* h
Where p : density of fluid
g: gravitational constant 9.81 m/s^2
h : depth of the fluid
Since, all the glasses filled have same Area base, same depth and same density of fluid and g is constant. The pressure at the bottom of each drinking glass is equal for all cases. As supported by the relationship given above.
It will take approximately 32.0 seconds for the package to reach sea level from the time it is dropped, assuming that air resistance can be neglected.
We can assume that the package, like the plane, has an initial velocity of 342 km/hour in the horizontal direction. We also assume that air resistance can be neglected.
Assuming that the package was dropped from rest at a height of h, the time it takes for the package to reach sea level can be calculated using the equation:
h = (1/2) * g * t²
where g is the acceleration due to gravity (9.8 m/s²) and t is the time it takes for the package to reach sea level.
Solving for t, we get:
t = sqrt(2h/g)
To convert the initial velocity of the package from km/hour to m/s, we can use the conversion factor:
1 km/hour = 0.2778 m/s
Therefore, the initial velocity of the package is:
v0 = 342 km/hour * 0.2778 m/s/km/hour = 95.0 m/s
if the package was dropped from a height of 5000 meters, the time it takes for the package to reach sea level is:
h = 5000 m
t = sqrt(2h/g) = sqrt(2*5000/9.8) = 32.0 seconds
Therefore, it will take approximately 32.0 seconds for the package to reach sea level from the time it is dropped, assuming that air resistance can be neglected.
To know more about velocity:
#SPJ12
The time a dropped package takes to reach sea level from a plane is determined by its vertical motion. If the package retains only horizontal velocity when released, the time taken would be calculated using the height from which the object is dropped. However, to give a numerical value of time, we need to know the exact height.
The time it takes for the package dropped from the plane to reach sea level is determined exclusively by the package's vertical motion, assuming the package does not face air resistance. Specifically, the time of flight for a projectile launched and landing at the same elevation is governed by the equation: t = 2*v/g, where v represents the initial vertical velocity and g is the acceleration due to gravity. From the scenario, it seems the package retains only horizontal velocity when released since it's dropped down directly rather than being thrown downward, hence rendering initial vertical velocity as zero. Simply put, the package only begins to accelerate in the vertical direction once it's dropped, meaning the time taken would be calculated using the equation: t = √(2h/g), h being the height from which the object is dropped.
In the provided context, unfortunately, we need the height from which the package is dropped to give a specific numerical value of the time in seconds. If we knew the height of the plane at the time the package was dropped, we'd recalculate the time in seconds more precisely.
#SPJ11
B) 5 J
C) 50 J
D) 1 J
E) 10 J
Answer:
option C
Explanation:
given,
Force on the object = 10 N
distance of push = 5 m
Work done = ?
we know,
work done is equal to Force into displacement.
W = F . s
W = 10 x 5
W = 50 J
Work done by the object when 10 N force is applied is equal to 50 J
Hence, the correct answer is option C
The work done on an object when a force of 10 N pushes it 5 m is 50 Joules, calculated by multiplying the force and the displacement. So, the correct option is C.
The question is asking about work, which in physics is the result of a force causing a displacement. The formula for work is defined as the product of the force (in Newtons) and the displacement (in meters) the force causes. If a force of 10 N pushes an object a distance of 5 m, the work done is calculated by multiplying the force and the displacement (10 N * 5 m), yielding 50 Joules of work.
Therefore, the correct answer is 50 J (C).
#SPJ6
Answer:
a) h=3.16 m, b) v_{cm }^ = 6.43 m / s
Explanation:
a) For this exercise we can use the conservation of mechanical energy
Starting point. Highest on the hill
Em₀ = U = mg h
final point. Lowest point
= K
Scientific energy has two parts, one of translation of center of mass (center of the sphere) and one of stationery, the sphere
K = ½ m + ½ w²
angular and linear speed are related
v = w r
w = v / r
K = ½ m v_{cm }^{2} + ½ I_{cm} v_{cm }^{2} / r²
Em_{f} = ½ v_{cm }^{2} (m + I_{cm} / r2)
as there are no friction losses, mechanical energy is conserved
Em₀ = Em_{f}
mg h = ½ v_{cm }^{2} (m + I_{cm} / r²) (1)
h = ½ v_{cm }^{2} / g (1 + I_{cm} / mr²)
for the moment of inertia of a basketball we can approximate it to a spherical shell
I_{cm} = ⅔ m r²
we substitute
h = ½ v_{cm }^{2} / g (1 + ⅔ mr² / mr²)
h = ½ v_{cm }^{2}/g 5/3
h = 5/6 v_{cm }^{2} / g
let's calculate
h = 5/6 6.1 2 / 9.8
h = 3.16 m
b) this part of the exercise we solve the speed of equation 1
v_{cm }^{2} = 2m gh / (1 + I_{cm} / r²)
in this case the object is a frozen juice container, which we can simulate a solid cylinder with moment of inertia
I_{cm} = ½ m r²
we substitute
v_{cm } = √ [2gh / (1 + ½)]
v_{cm } = √(4/3 gh)
let's calculate
v_{cm } = √ (4/3 9.8 3.16)
v_{cm }^ = 6.43 m / s
Answer:
4611.58 ft/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 32.174 ft/s²
Equation of motion
Magnitude of acceleration while stopping is 4611.58 ft/s²
Answer:
a) The fly is 2.24 m from the origin.
b) In polar coordinates, the position of the fly is (2.24 m, 26.7°).
Explanation:
Hi there!
The position vector of the fly is r = (2.00, 1.00)m. The distance from that point to the origin is the magnitude of the vector "r" (see figure).
a) Notice in the attached figure that the distance from the origin to the point where the fly is located is the hypotenuse of the triangle formed by r, the x-component of r (2.00 m) and the y-component ( 1.00 m). Then:
r² = (2.00 m)² + (1.00 m)²
r² = 5.00 m²
r = 2.24 m
The fly is 2.24 m from the origin.
b) To find the angle θ (see figure) we can use trigonometry:
cos θ = adjacent / hypotenuse
cos θ = 2.00 m / √5 m
θ = 26.7°
The same will be obtained if we use sin θ:
sin θ = opposite / hypotenuse
sin θ = 1.00 m / √5 m
θ = 26.7°
In polar coordinates, the position of the fly is (2.24 m, 26.7°).
Answer:The SI system is based on the number 10 as well as multiples and products of 10. This makes it much easier to use, and so it has been the accepted system in scientific and technical applications. The English system is more complicated as relationships between units of the same quantity aren't uniform.
Explanation:
Answer:
The metric system is an internationally agreed decimal system of measurement while The International System of Units (SI) is the official system of measurement in almost every country in the world