Work = Force times Distance
Work = 200 x 30
Work = 6000
The work done by a force of 200N on a body that moved 30m is 6000J or 6000 Joules.
Answer:
(a):
(b):
(c):
(d):
(e):
Explanation:
Given, the position of the particle along the x axis is
The units of terms and should also be same as that of x, i.e., meters.
The unit of t is seconds.
(a):
Unit of
Therefore, unit of
(b):
Unit of
Therefore, unit of
(c):
The velocity v and the position x of a particle are related as
(d):
The acceleration a and the velocity v of the particle is related as
(e):
The particle attains maximum x at, let's say, , when the following two conditions are fulfilled:
Applying both these conditions,
For ,
Since, c is a positive constant therefore, for ,
Thus, particle does not reach its maximum value at
For ,
Here,
Thus, the particle reach its maximum x value at time
Answer:
0.00124 V
Explanation:
Parameters given:
Initial circumference = 162 cm
Rate of decrease of circumference = 14 cm/s
Magnetic field, B = 0.5 T
Time, t = 8 secs
The magnitude of the EMF induced in the loop is given as:
V = (-NBA) / t
Where N = number of turns = 1
B = magnetic field
A = area of loop
t = time taken
First, we need to find the area of the loop.
To do this, we will find the radius after the loop circumference has decreased for 8 secs.
The rate of decrease of the circumference is 14 cm/s and 8 secs has passed, which means after 8 secs, it has decreased by:
14 * 8 = 112 cm
The new circumference is:
162 - 112 = 50 cm = 0.5 m
To get radius:
C = 2 * pi * r
r = C / (2 * pi)
r = 0.5 / (2 * 3.142)
r = 0.0796 m
The area is:
A = pi * r²
A = 3.142 * 0.0796²
A = 0.0199 m²
Therefore, the EMF induced is:
V = (-1 * 0.5 * 0.0199) / 8
V = -0.00124V
This is the EMF induced in the coil.
The magnitude is |-0.00124| V = 0.00124 V.
Explanation:
It is given that,
Distance, r = 3.5 m
Electric field due to an infinite wall of charges, E = 125 N/C
We need to find the electric field 1.5 meters from the wall, r' = 1.5 m. Let it is equal to E'. For an infinite wall of charge the electric field is given by :
It is clear that the electric field is inversely proportional to the distance. So,
E' = 291.67 N/C
So, the magnitude of the electric field 1.5 meters from the wall is 291.67 N/C. Hence, this is the required solution.