How does the force of gravity change as the mass of one object doubles?

Answers

Answer 1
Answer:

The force of gravity changes as the mass of one object doubles. As the mass of one object is doubled then the force between the objects also gets doubled.

What is Force?

Force is an influence which can change the motion of an object through the application of an external force. A force can cause an object with the mass to change its velocity, that is the object undergo acceleration.

Force is directly proportional to the mass of the object and the acceleration of the object. If we double the mass of one of the objects, then we double the strength of the force. If we double the masses of both the objects, then we quadruple the strength of force.

Learn more about Force here:

brainly.com/question/13191643

#SPJ2

Answer 2
Answer: If the mass of one of the objects is doubled, then the force of gravity between them is doubled. ... Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces.

Related Questions

When water freezes, its volume increases by 9.05% (that is, ΔV / V0 = 9.05 × 10-2). What force per unit area is water capable of exerting on a container when it freezes? (It is acceptable to use the bulk modulus of water, B = 2.2 × 109 N/m2, for this problem.) Give your answer in N/cm2.
How does an increase in cold working effect Modulus of Elasticity and why?
A spring-loaded gun, fired vertically, shoots a marble 9.0 m straight up in the air. What is the marble's range if it is fired horizontally from 1.8 m above the ground?
Some amount of ideal gas with internal energy U and initial temperature 1000C was compressed to half of volume meanwhile absolute pressure inside of a container increased twice. We can say that internal energy of this gas after compression in terms of U is (20.2, 20.1, 19.4, 19.5) Group of answer choices
Guitar string has an overall length of 1.22 m and a total mass of 3.5 g before being strung on a guitar. Once it is used on the guitar, there is a distance of 70 cm between fixed end points. The guitar string is tightened to a tension of 255 N.What is the frequency of the fundamental wave on the guitar string?

An object essentially at infinity is moved to a distance of 90 cm in front of a thin positive lens. In the process its image distance triples. Determine the focal length of the lens.

Answers

Answer:

67.5 cm

Explanation:

u = - 90 cm, v = 3 x u = 3 x 90 = 270 cm

let f be the focal length

Use lens equation

1 / f = 1 / v - 1 / u

1 / f = 1 / 270 + 1 / 90

1 / f = 4 / 270

f = 67.5 cm

Final answer:

To determine the focal length of the lens, we use the lens formula and set up an equation based on the given information. Solving for the image distance, we find that it is zero, indicating the image is formed at infinity. Therefore, the focal length of the lens is 90 cm.

Explanation:

To determine the focal length of the lens, we can use the lens formula:

1/f = 1/v - 1/u

Where f is the focal length, v is the image distance, and u is the object distance.

Given that the image distance triples when the object is moved from infinity to 90 cm in front of the lens, we can set up the following equation:

1/f = 1/(3v) - 1/(90)

Multiplying through by 90*3v, we get:

90*3v/f = 270v - 90*3v

90*3v/f = 270v - 270v

90*3v/f = 0

Simplifying further, we find that: v = 0

When the image distance is zero, it means the image is formed at infinity, so the lens is focused at the focal point. Therefore, the focal length of the lens is 90 cm.

A helicopter is hovering above the ground. Jim reaches out of the copter (with a safety harness on) at 180 m above the ground. A package is launched upward, from a point on a roof 10 m above the ground. The initial velocity of the package is 50.5 m/s. Consider all quantities as positive in the upward direction. Does Jim Bond have a chance to catch the package? (calculate how high will it go)

Answers

Answer:

The maximum height of the package is 140 m above the ground. Jim Bond will not catch the package.

Explanation:

Hi there!

The equation of height and velocity of the package are the following:

h = h0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

h = height of the package at time t.

h0 = initial height.

v0 = initial velocity.

t = time.

g = acceleration due to gravity (-9.81 m/s² because we consider the upward direction as positive).

v = velocity of the package at a time t.

First, let´s find the time it takes the package to reach the maximum height. For this, we will use the equation of velocity because we know that at the maximum height, the velocity of the package is zero. So, we have to find the time at which v = 0:

v = v0 + g · t

0 = 50.5 m/s - 9.8 m/s² · t

Solving for t:

-50.5 m/s / -9.81 m/s² = t

t = 5.15 s

Now, let´s find the height that the package reaches in that time using the equation of height. Let´s place the origin of the frame of reference on the ground so that the initial position of the package is 10 m above the ground:

h = h0 + v0 · t + 1/2 · g · t²

h = 10 m + 50.5 m/s · 5.15 s - 1/2 · 9.81 m/s² · (5.15 s)²

h = 140 m

The maximum height of the package is 140 m above the ground. Jim Bond will not catch the package.

How does activity on the Sun affect natural phenomena on Earth?

Answers

Answer and Explanation:

The Sun is the main source of energy on the earth if there will be no availability of Sun energy then life is impossible om the earth besides this the Sun warms our planet. The heating of ocean and atmosphere is mainly sue to Sun energy .Sun has also a great impact on the weather we can say that Sun is weather deciding on the earth our climate is totally dependent on the how much energy we got in form of radiation from earth.

What are some of the benefits of learned optimism that have been found inresearch?
O
A. Fewer health problems
O
O
B. All of these
C. Making more money
O
D. A lower divorce rate

Answers

The benefits of learned optimism that have been found in research are Fewer health problems, Making more money, and a lower divorce rate. The correct option is B.

Learned optimismhas been associated with numerous benefits in research, including fewer health problems, making more money, and a lower divorce rate. Optimistic people tend to have better physical and mental health, which leads to fewer health problems. Additionally, optimistic people tend to be more successful in their careers and finances, which can lead to higher income and better financial stability. Finally, optimistic people tend to have better relationships, including lower divorce rates, as they are better able to handle conflicts and maintain positive attitudes toward their partners.

In summary, learned optimism has a range of benefitsfor individuals, including better physical and mental health, greater success in work and education, better relationships with others, and improved resilience. These benefits make learned optimism an important skill for individuals to develop in order to lead happier, healthier, and more successful lives.

To learn about  pessimism  click:

brainly.com/question/30880008

#SPJ7

A laser (electromagnetic wave) has the maximum electric field strength of 1.0x1011 V/m. What is the force the laser applies on a mirror (totally reflective) of 5.0 mm2 area? A. 2.76 x105N B. 1.21 x106N C. 1.94 x106N D.4.43 x105 N E. 7.82 x104N

Answers

Answer:

The correct option is  D

Explanation:

From the question we are told that

  The maximum electric field strength is  E = 1.0 *10^(11) \  V/m

   The  area is  A = 5.0 \ mm^2  = 5.0 *10^(-6) \  m^2

Generally the force the laser applies is mathematically represented as

       F = \epsilon_o * E ^2 * A

Here  \epsilon_o = 8.85*10^(-12) C/(V \cdot m)

      F =  8.85*10^(-12)  * (1.0 *10^(11)) ^2 * 5.00*10^(-6 )

=>   F =  4.43 *10^(5) \ N

A fly lands on one wall of a room. The lower-left corner of the wall is selected as the origin of a two-dimensional Car- tesian coordinate system. If the fly is located at the point having coordinates (2.00, 1.00) m, (a) how far is it from the origin? (b) What is its location in polar coordinates?

Answers

Answer:

a) The fly is 2.24 m from the origin.

b) In polar coordinates, the position of the fly is (2.24 m, 26.7°).

Explanation:

Hi there!

The position vector of the fly is r = (2.00, 1.00)m. The distance from that point to the origin is the magnitude of the vector "r" (see figure).

a) Notice in the attached figure that the distance from the origin to the point where the fly is located is the hypotenuse of the triangle formed by r, the x-component of r (2.00 m) and the y-component ( 1.00 m). Then:

r² = (2.00 m)² + (1.00 m)²

r² = 5.00 m²

r = 2.24 m

The fly is 2.24 m from the origin.

b) To find the angle θ (see figure) we can use trigonometry:

cos θ = adjacent / hypotenuse

cos θ = 2.00 m / √5 m

θ = 26.7°

The same will be obtained if we use sin θ:

sin θ = opposite / hypotenuse

sin θ = 1.00 m / √5 m

θ = 26.7°

In polar coordinates, the position of the fly is (2.24 m, 26.7°).