An object is floating in equilibrium on the surface of a liquid. The object is then removed and placed in another container, filled with a less dense liquid. What would you observe?

Answers

Answer 1
Answer:

Answer:

The fraction of its volume inside liquid  is increased .

Explanation:

According to principle pf floatation , an object floats on the surface of water

when the weight of  liquid displaced by it becomes equal to weight of the object . weight of the liquid depends upon the density of the liquid .

In the second case , when the body is dipped into liquid of lesser density , in order to balance the weight of body , more volume of liquid will be displaced so that weight of displaced liquid becomes equal to object's weight . So the body floats with greater depth inside liquid . The fraction of its volume inside liquid  is increased .


Related Questions

A 5-kg moving at 6 m/s collided with a 1-kg ball at rest. The ball bounce off each other and the second ball moves in the same direction as the first ball at 10 m/sec. What is the velocity of the first ball after the collision?
"A proton is placed in a uniform electric field of 2750 N/C. You may want to review (Page) . For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Electron in a uniform field. Calculate the magnitude of the electric force felt by the proton. Express your answer in newtons.(F = ? )Calculate the proton's acceleration.( a= ? m/s2 )Calculate the proton's speed after 1.40 {\rm \mu s} in the field, assuming it starts from rest.( V= ? m/s )"
Nitrogen makes up about what percent of a human's body weight?
If the diameter of the black marble is 3.0cm, and bye using the formula for volume, what is a good approximation if it’s volume? Record to the ones place
A pressure antinode in a sound wave is a region of high pressure, while a pressure node is a region of low pressure.TrueFalse

A thin Nichrome wire connected to an ammeter surrounds a region of time-varying magnetic flux, and the ammeter reads 13 amperes. If instead of a single wire we use a coil of thin Nichrome wire containing 23 turns, what does the ammeter read?

Answers

Answer:

The current would be same in both situation.

Explanation:

Given that,

Current I = 13 A

Number of turns = 23

We need to calculate the induced emf

Using formula of induced emf is

\epsilon=NA(dB)/(dt)

For N = 1

\epsilon=A(dB)/(dt)

We need to calculate the current

Using formula of current

i=(\epsilon)/(R)

Put the value of emf

i=(A(dB)/(dt))/(R)

Now, if the number of turn is 22 , then induced emf would be

\epsilon'=NA(dB)/(dt)

Then the current would be

i'=(\epsilon')/(NR)

i'=(NA(dB)/(dt))/(NR)

i'=(A(dB)/(dt))/(R)

i'=i

Hence, The current would be same in both situation.

How does an increase in cold working effect Modulus of Elasticity and why?

Answers

Answer:

There is a decrease in modulus of elasticity

Explanation:

Young's Modulus of elasticity also known as elastic modulus is the deformation of a body along a particular axis under the action of opposing forces along that axis. at atomic levels, it depends on bond energy or strength.

In cold working processes, plastic deformation a metal occurs below its re-crystallization temperature due to which crystal structure of metal gets distorted and as a result of dislocations fractures also occur resulting in hardening of metal but bonds at atomic levels defining elasticity are temporarily affected.

Thus an increase in cold working results in a decrease in modulus of elasticity.

Each shot of the laser gun most favored by Rosa the Closer, the intrepid vigilante of the lawless 22nd century, is powered by the discharge of a 1.89 Fcapacitor charged to 60.9 kV. Rosa rightly reckons that she can enhance the effect of each laser pulse by increasing the electric potential energy of the charged capacitor. She could do this by replacing the capacitor's filling, whose dielectric constant is 431, with one possessing a dielectric constant of 947.Required:
a. Find the electric potential energy of the original capacitor when it is charged. (in Joules)
b. Calculate the electric potential energy of the upgraded capacitor when it is charged. ( In Joules)

Answers

Answer:

a

U  =  3.505 *10^9 \  J

b

U_1  = 7.696 *10^9 \  J

Explanation:

From the question we are told that

The capacitance is C  =  1.89 \  F

The voltage is V  =  60.9 \  k V  = 60.9 *10^(3) \  V

The first dielectric constant is \epsilon_1  = 431

The second dielectric constant is \epsilon_2  = 947

Generally the electric potential energy is mathematically represented as

U  =  (1)/(2)  *  C  * V^2

=> U  =  (1)/(2)  *    1.89  * (60.9 *10^(3))^2

=> U  =  3.505 *10^9 \  J

Generally the capacitance when the capacitor's filling was changed is

C_n  =  1.89 *  (947)/(431)

=>   C_n  =  4.15

Generally the electric potential energy when the capacitor's filling  was changed is

       U_1  =  (1)/(2)  *  C_1  * V^2

=>  U_1  =  (1)/(2)  *   4.15  * (60.9 *10^(3))^2

=>  U_1  = 7.696 *10^9 \  J

An earthquake on the ocean floor produced a giant wave called a tsunami. The tsunami traveled through the ocean and hit a remote island, causing a lot of damage. Is the water that hit the island the same water that was above the earthquake on the ocean floor?A No, the water from above the earthquake stayed in the same place and only the energy was transferred.
B No, the energy in the wave pushed the water particles from above the earthquake in the opposite direction.
C Yes, the water particles moved toward the island while the energy remained above the earthquake.

Answers

A lot of the biology particles can be certified by a sphychiatrist that can determine weather they are infected with Ebola

Which statement would most likely be found in an advertisement from a
cell phone provider

Answers

Answer:B

Explanation:

Two narrow slits separated by 1.5 mm are illuminated by 514 nm light. Find the distance between adjacent bright fringes on a screen 5.0 m from the slits. Express your answer in meters using two significant figures.

Answers

The distance between the adjacent bright fringes is : 1.7 * 10⁻³ M

Given data :

separation between slits ( d ) = 1.5 x 10⁻³ m

wavelength of light ( λ ) =  514 * 10⁻⁹ m

Distance from narrow slit ( D ) = 5.0 m

Determine the distance between the adjacent bright fringes

we apply the formula below

w = D * λ  / d  ---- ( 1 )

where : w = distance between adjacent bright fringes

Back to equation ( 1 )

w =  ( 5 * 514 * 10⁻⁹ ) / 1.5 x 10⁻³

   = 1.7 * 10⁻³ M

Hence we can conclude that The distance between the adjacent bright fringes is : 1.7 * 10⁻³ M

Learn more about bright fringes calculations  : brainly.com/question/4449144

Answer:

1.7* 10^(-3) m

Explanation:

d = separation between the two narrow slits = 1.5 mm = 1.5 x 10⁻³ m

λ = wavelength of the light = 514 nm = 514 x 10⁻⁹ m

D = Distance of the screen from the narrow slits = 5.0 m

w = Distance between the adjacent bright fringes on the screen

Distance between the adjacent bright fringes on the screen is given as

w = (D\lambda )/(d)

w = ((5.0)(514* 10^(-9)) )/(1.5* 10^(-3))

w = 1.7* 10^(-3) m