Answer:
when u learn something new it goes to ur short term memory
Answer:
a. 409.5 m/s b. f₁ = 136.5 Hz, f₂ = 409.5 Hz, f₃ = 682.5 Hz
Explanation:
a. The speed of sound v in a gas is v = √(B/ρ) where B = bulk modulus and ρ = density. Given that on Venus, B = 1.09 × 10⁷ N/m² and ρ = 65.0 kg/m³
So, v = √(B/ρ)
= √(1.09 × 10⁷ N/m²/65.0 kg/m³)
= √(0.01677 × 10⁷ Nm/kg)
= √(0.1677 × 10⁶ Nm/kg)
= 0.4095 × 10³ m/s
= 409.5 m/s
b. For a pipe open at one end, the frequency f = nv/4L where n = mode of wave = 1,3,5,.., v = speed of wave = 409.5 m/s and L = length of pipe = 75.0 cm = 0.75 m
Now, for the first mode or frequency, n = 1
f₁ = v/4L
= 409.5 m/s ÷ (4 × 0.75 m)
= 409,5 m/s ÷ 3 m
= 136.5 Hz
Now, for the second mode or frequency, n = 2
f₂ = 3v/4L
= 3 ×409.5 m/s ÷ (4 × 0.75 m)
= 3 × 409,5 m/s ÷ 3 m
= 3 × 136.5 Hz
= 409.5 Hz
Now, for the third mode or frequency, n = 5
f₃ = 5v/4L
= 5 × 409.5 m/s ÷ (4 × 0.75 m)
= 5 × 409,5 m/s ÷ 3 m
= 682.5 Hz
Answer:
The lid becomes tighter
It becomes tighter because metals have a lower heat capacity than glass meaning their temperature drops (or increases) much faster than glass for the same energy change. So in this example, the metal will contract faster than the glass causing it to be more tighter around the glass.
Answer:
(a). The change in the kinetic energy of his center of mass during this process is -495 J.
(b). The average force is 1650 N.
Explanation:
Given that,
Mass = 110 kg
Speed = 3.0 m/s
Distance = 30 cm
(a). We need to calculate the change in the kinetic energy of his center of mass during this process
Using formula of kinetic energy
Put the value into the formula
(b). We need to calculate the average force must he exert on the railing
Using work energy theorem
Put the value into the formula
The average force is 1650 N.
Hence, (a). The change in the kinetic energy of his center of mass during this process is -495 J.
(b). The average force is 1650 N.
Answer
given,
mass of ice hockey player = 110 Kg
initial speed of the skate = 3 m/s
final speed of the skate = 0 m/s
distance of the center of mass, m = 30 cm = 0.3 m
a) Change in kinetic energy
b) Average force must he exerted on the railing
using work energy theorem
W = Δ KE
F .d = -495
F x 0.3 = -495
F = -1650 N
the average force exerted on the railing is equal to 1650 N.
(b) Find the ball's speed at impact.
(c) Find the horizontal range of the ball.
Answer:
B
Explanation:
Answer:
w =
Explanation:
For this exercise let's start by applying Newton's second law to the mass with the string
W - T = m a
In this case, as the system is going down, we will assume the vertical directional down as positive.
T = W - m a
Now we apply Newton's second law for rotational motion to the pulley of radius r. We will assume the positive counterclockwise rotations
∑ τ = I α
T r = I α
the moment of inertia of the disk is
I = ½ M R²
angular and linear acceleration are related
a = α r
we substitute
T r = (½ m R²) (a / r)
T = ½ m ( )² a
we write our two equations
T = W - m a
T = ½ m ( )² a
we solve the system of equations
W - m a = ½ m (\frac{R}{r} )² a
m g = m a [ 1 + ½ (\frac{R}{r} )² ]
a =
this acceleration is constant throughout the trajectory, so with the angular and lineal kinematics relations
w² = w₀² + 2 α θ
v² = v₀² + 2 a y
as the system is released its initial angular velocity is zero
w² = 0 + 2 α θ
v² = 0 + 2 a y
we look for the angular acceleration
a =α r
α = a / r
α =
we look for the angle, remember that they must be measured in radians
θ = s / r
in this case we approximate the arc to the distance
s = y
θ = y / r
we substitute
w =
w =
for the simple case where r = R
w =
w =
Answer:
The maximum height of the package is 140 m above the ground. Jim Bond will not catch the package.
Explanation:
Hi there!
The equation of height and velocity of the package are the following:
h = h0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
h = height of the package at time t.
h0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity (-9.81 m/s² because we consider the upward direction as positive).
v = velocity of the package at a time t.
First, let´s find the time it takes the package to reach the maximum height. For this, we will use the equation of velocity because we know that at the maximum height, the velocity of the package is zero. So, we have to find the time at which v = 0:
v = v0 + g · t
0 = 50.5 m/s - 9.8 m/s² · t
Solving for t:
-50.5 m/s / -9.81 m/s² = t
t = 5.15 s
Now, let´s find the height that the package reaches in that time using the equation of height. Let´s place the origin of the frame of reference on the ground so that the initial position of the package is 10 m above the ground:
h = h0 + v0 · t + 1/2 · g · t²
h = 10 m + 50.5 m/s · 5.15 s - 1/2 · 9.81 m/s² · (5.15 s)²
h = 140 m
The maximum height of the package is 140 m above the ground. Jim Bond will not catch the package.