The electrical energy used by a 400 W toaster that is operating for 5 minutes will be 120,000 J.Option C is correct.
The rate of the work done is called the power output. It is denoted by P.Its unit of a watt. It is the ratio of the work done or the enrgy to the time period.
The given data in the problem is;
E is the electrical energy
P is the power output = 400 W
t is the time period = 5 minutes
The power output is given as;
Hence the electrical energy used by a 400 W toaster that is operating for 5 minutes will be 120,000 J.Option C is correct.
To learn more about the power output refer to the link;
Answer:
The answer is C. 120,000 J.
Explanation:
Answer:The SI system is based on the number 10 as well as multiples and products of 10. This makes it much easier to use, and so it has been the accepted system in scientific and technical applications. The English system is more complicated as relationships between units of the same quantity aren't uniform.
Explanation:
Answer:
The metric system is an internationally agreed decimal system of measurement while The International System of Units (SI) is the official system of measurement in almost every country in the world
Answer:
The correct answer is A) lever and wheel and axle
Explanation:
I took the quiz
hope this helps :)
Answer; 10.6 i think
Explanation:
(a) At the top of the hill, the coaster has total energy (potential and kinetic)
E = (1000 kg) g (10 m) + 1/2 (1000 kg) (6 m/s)² = 116,000 J
As it reaches its lowest position, its potential energy is converted to kinetic energy, and some is lost to friction, making its speed v such that
1/2 (1000 kg) v ² = 116,000 J - 1700 J = 114,300 J
===> v ≈ 15.2 m/s
If no energy is lost to friction as the coaster makes its way up the second hill, all of its kinetic energy would be converted to potential energy at the maximum possible height H.
1/2 (1000 kg) (15.2 m/s)² = (1000 kg) gH
===> H ≈ 11.7 m
(b) At the top of the second hill with minimum height h, and with maximum speed 4.6 m/s, the coaster has energy
E = P + K = (1000 kg) gh + 1/2 (1000 kg) (4.6 m/s)²
Assuming friction isn't a factor again, the energy here should match the energy at the lowest point in part (a), 114,300 J.
(1000 kg) g h + 1/2 (1000 kg) (4.6 m/s)² = 114,300 J
===> h ≈ 10.6 m
Answer:
a = 5.53 g , a = -15g
Explanation:
This is an exercise in kinematics.
a) Let's look for the acceleration
as part of rest v₀ = 0
v = v₀ + a t
a = v / t
a = 282 / 5.2
a = 54.23 m / s²
in relation to the acceleration of gravity
a / g = 54.23 / 9.8
a = 5.53 g
b) let's look at the acceleration to stop
va = 0
0 = v₀ -2 a y
a = vi / y
a = 282/2 1
a = 141 m /s²
a / G = 141 / 9.8
a = -15g
1 cm = 100 m
1 mm = 100 cm
100 mm = 1 cm
1 m = 100 cm
Answer:
The last one
1m = 100 cm
Explanation:
If you do not trust me look it up
Answer:
a. 12.12°
b. 412.04 N
Explanation:
Along vertical axis, the equation can be written as
T_1 sin14 + T_2sinA = mg
T_2sinA = mg - T_1sin12.5 ....................... (a)
Along horizontal axis, the equation can be written as
T_2×cosA = T_1×cos12.5 ......................... (b)
(a)/(b) given us
Tan A = (mg - T_1sin12.5) / T_1 cos12.5
= (176 - 413sin12.5) / 413×cos12.5
A = 12.12 °
(b) T2 cosA = T1 cos12.5
T2 = 413cos12.5/cos12.12
= 412.04 N
Answer:
Magnitude - 11.83 Degree
Direction - 422.42 N
Explanation:
Given data:
Downward force on wire 176 N
Angle made by left section of wire 12.5 degree with horizontal
Tension force = 413 N
From figure
Applying quilibrium principle at point A
The vertical and horizontal force is 0
then we have
........1
.......2
.......3
divide equation 3 by 1
we get
...........4
from equation 3 and 4
T = 422.42 N