A diverging lens has a focal length of 23.9 cm. An object 2.1 cm in height is placed 100 cm in front of the lens. Locate the position of the image. Answer in units of cm. 007 (part 2 of 3) 10.0 points What is the magnification? 008 (part 3 of 3) 10.0 points Find the height of the image. Answer in units of cm.

Answers

Answer 1
Answer:

Answer:

Image is virtual and formed on the same side as the object, 19.29 cm from the lens.

The height of the image is 0.40509 cm

Image is upright as the magnification is positive and smaller than the object.

Explanation:

u = Object distance =  100 cm

v = Image distance

f = Focal length = -23.9 cm (concave lens)

h_u= Object height = 2.1 cm

Lens Equation

(1)/(f)=(1)/(u)+(1)/(v)\n\Rightarrow (1)/(f)-(1)/(u)=(1)/(v)\n\Rightarrow (1)/(v)=(1)/(-23.9)-(1)/(100)\n\Rightarrow (1)/(v)=(-1239)/(23900) \n\Rightarrow v=(-23900)/(1239)=-19.29\ cm

Image is virtual and formed on the same side as the object, 19.29 cm from the lens.

Magnification

m=-(v)/(u)\n\Rightarrow m=-(-19.29)/(100)\n\Rightarrow m=0.1929

m=(h_v)/(h_u)\n\Rightarrow 0.1929=(h_v)/(2.1)\n\Rightarrow h_v=0.1929* 2.1=0.40509\ cm

The height of the image is 0.40509 cm

Image is upright as the magnification is positive and smaller than the object.


Related Questions

Which law of physics relates electric fields and current
Do you think a baseball curves better at the top of a high mountain or down on a flat plain
Calculate the ionization potential for C+5 ( 5 electrons removed for the C atom) and in addition compute the wavelength of the transition from n=3 to n= 2.
You're driving along at 25 m/s with your aunt's valuable antiques in the back of your pickup truck when suddenly you see a giant hole in the road 55 m ahead of you. Fortunately, your foot is right beside the brake and your reaction time is zero! Can you stop without the antiques sliding and being damaged? Their coefficients of friction are μs=0.6 and μk=0.3. Hint: You're not trying to stop in the shortest possible distance. What's your best strategy for avoiding damage to the antiques?
As you are leaving a building, the door opens outward. If the hinges on the door are on your right, what is the direction of the angular velocity of the door as you open it?a. up to the ceiling/sky.b. down to the floor/ground.c. to your left.d. to your right.

In the study of​ sound, one version of the law of tensions is:f1= f2 √ (F1/F2)

If f1= 300, F2= 60, and f2=260, find f1 to the nearest unit.

Answers

Answer:

F1 = 80

Explanation:

f1= f2 √ (F1/F2)

Where f1 = 300, f2 = 260 and F2 = 60

Putting in the above formula

300 = 260√(F1/60)

Dividing both sides by 260

=> 1.15 = √(F1/60)

Squaring both sides

=> 1.33 = F1/60

Multiplying both sides by 60

=> F1 = 80

Which law does the following statement express? "In all cases of electromagnetic induction, the induced voltages have adirection such that the currents they produce oppose the effect that produces them."

Answers

Final answer:

Faraday's Law of electromagnetic induction states that induced voltages produce currents that oppose the change in the magnetic field.


Explanation:

The law that the statement expresses is Faraday's Law of electromagnetic induction.

According to Faraday's Law, whenever there is a change in the magnetic field through a conductor, it induces an electromotive force (EMF) or voltage across the conductor. This induced voltage creates a current that flows in a direction that opposes the change in magnetic field.

This phenomenon is described by Lenz's Law, which states that the induced current always flows in such a way as to produce a magnetic field that opposes the change in the external magnetic field.


Learn more about Faraday's Law of electromagnetic induction here:

brainly.com/question/13369951


Which of these factors make hydrogen fuel cells a better option than burning fossil fuels? A.Hydrogen fuel cells have a higher energy efficiency. B.Hydrogen fuel cells create less pollution. C.Burning fossil fuels relies on outdated devices and technology. D.Hydrogen is the most abundant element in the universe. E.Hydrogen fuel cells are more expensive than fossil fuels.

Answers

Answer: i think it is B

Explanation:

Interactive Solution 9.1 presents a model for solving this problem. The wheel of a car has a radius of 0.380 m. The engine of the car applies a torque of 456 N·m to this wheel, which does not slip against the road surface. Since the wheel does not slip, the road must be applying a force of static friction to the wheel that produces a countertorque. Moreover, the car has a constant velocity, so this countertorque balances the applied torque. What is the magnitude of the static frictional force?

Answers

Answer:

The magnitude of the static frictional force is 1200 N

Explanation:

given information :

radius, r = 0.380 m

applied-torque, τ1 = 456 N

The car has a constant velocity, thus the acceleration is zero

α = 0

Στ = I α

τ1 - τ2 = I α

τ2 = counter-torque

τ1 - τ2 = 0

τ1 = τ2

r x F_(s) = τ1

F_(s) = the static frictional force (N)

F_(s) = τ1 /r

  = 456 N/0.380 m

  = 1200 N

A 50n brick is suspended by a light string from a 30kg pulley which may be considered a solid disk with radius 2.0m. the brick is released from rest and falls to the floor below as the pulley rotates. it takes 4 seconds for the brick to hit the floor. i) what is the tension in newtons in the string well the brick is falling? ii) what is the magnitude of the angular momentum in kg*m^2/s of the pulley at the instant the brick hits the floor?

Answers

Brick is held at a position which is at height 2 m from the floor

Now it is released from rest and hit the floor after t = 4 s

Now the acceleration of the brick is given by

y = v_i* t + 0.5 at^2

2 = 0 + 0.5 * a * 4^2

a = 0.25 m/s^2

a)

Now in order to find the tension in the string

we can use Newton's law

F_(net) = ma

mg - T = ma

50 - T = (50)/(9.8)*0.25

T = 48.72 N

part b)

Now for the pulley

moment of inertia= (1)/(2)mr^2

m = 30 kg

R = 2 m

I = (1)/(2)*30*2^2

I = 60 kg m^2

Now the angular speed just before brick collide with the floor

w = (v)/(r)[\tex]</p><p>here we have</p><p>[tex]v = v_i + a* t

v = 0 + 0.25 * 4

v = 1 m/s

Now we will have

L = angular momentum = I w = I*(v)/(R)

L = 60 *(1)/(2)

L = 30 kg m^2/s

Garza travels at a speed of 5 m/s. How long will it take him to travel 640 m?

Answers

Answer:

128 s

Explanation:

The distance, speed and time are related as;

Distance=Speed* Time

Given that the speed = 5 m/s

Distance = 640 m

Time = ?

So,

Distance=Speed* Time

640\ m=5\ m/s* Time

Time=\frac {640\ m}{5\ m/s}=128\ s

Thus, Garza takes 128 s to travel 640 m at 5 m/s speed.