Answer:
Ionization potential of C⁺⁵ is 489.6 eV.
Wavelength of the transition from n=3 to n=2 is 1.83 x 10⁻⁸ m.
Explanation:
The ionization potential of hydrogen like atoms is given by the relation :
.....(1)
Here E is ionization potential, Z is atomic number and n is the principal quantum number which represents the state of the atom.
In this problem, the ionization potential of Carbon atom is to determine.
So, substitute 6 for Z and 1 for n in the equation (1).
E = 489.6 eV
The wavelength (λ) of the photon due to the transition of electrons in Hydrogen like atom is given by the relation :
......(2)
R is Rydberg constant, n₁ and n₂ are the transition states of the atom.
Substitute 6 for Z, 2 for n₁, 3 for n₂ and 1.09 x 10⁷ m⁻¹ for R in equation (2).
= 5.45 x 10⁷
λ = 1.83 x 10⁻⁸ m
Answer:
A) m2 = 98.71g
B) v_f2 = 1.86 m/s
Explanation:
We are given;
Mass of cart; m1 = 340g
Initial speed; v_i1 = 1.2 m/s
Final speed; v_f1 = 0.66 m/s
A)Since the collision is elastic, we can simply apply the conservation of momentum to get;
m1•(v_i1) = m1•(v_f1) + m2•(v_f2) - - - - - (eq1)
From conservation of kinetic energy, we have;
(1/2)m1•(v_i1)² = (1/2)m1•(v_f1)² + (1/2)m2•(v_f2)² - - - - eq(2)
Let's make v_f2 the subject in eq 2;
Thus,
v_f2 = √([m1•(v_i1)² - m1•(v_f1)²]/m2)
v_f2 = √([m1((v_i1)² - (v_f1)²)]/m2)
Let's put this for v_f2 in eq1 to obtain;
m2 = {m1((v_i1) - (v_f1))}/√([m1((v_i1)² - (v_f1)²)]/m2)
Let's square both sides to give;
(m2)² = {m1•m2((v_i1) - (v_f1))²}/([(v_i1)² - (v_f1)²]
This gives;
m2 = {m1((v_i1) - (v_f1))²}/([(v_i1)² - (v_f1)²]
Plugging in the relevant values to get;
m2 = {340((1.2) - (0.66))²}/([(1.2)² - (0.66)²]
m2 = 98.71g
B) from equation 1, we have;
m1•(v_i1) = m1•(v_f1) + m2•(v_f2)
Making v_f2 the subject, we have;
v_f2 = m1[(v_i1) - (v_f1)]/m2
Plugging in the relevant values to get;
v_f2 = 340[(1.2) - (0.66)]/98.71
v_f2 = 1.86 m/s
To determine the mass of the second cart and its speed after impact, we can use the principle of conservation of momentum. The initial momentum of the first cart is equal to its final momentum plus the momentum of the second cart. After calculating the mass of the second cart, we can use the conservation of momentum again to find its speed by equating the final velocity of the combined carts to the initial velocity of the first cart.
To determine the mass of the second cart, we can use the principle of conservation of momentum. The initial momentum of the first cart, with a mass of 340 g and an initial velocity of 1.2 m/s, is equal to its final momentum plus the momentum of the second cart. Using this equation, we can solve for the mass of the second cart.
After calculating the mass of the second cart, we can use the conservation of momentum again to find its speed after the impact. Since the two carts stick together after the collision, the final velocity of the combined carts is equal to the initial velocity of the first cart. Using this equation, we can solve for the speed of the second cart.
#SPJ11
Answer:
Normal force exerted on the rover would be greater at a point on the surface of the planet where the weight of the rover is experienced to be greater.
Explanation:
Since weight is a vector quantity, it can vary with position. Weight is the amount of force the planet exerts on the rover centered towards the planet.
Such a force is the result of gravitational pull and is quantified as:
and
where:
R = distance between the center of mass of the two bodies (here planet & rover)
G = universal gravitational constant
M = mass of the planet
m = mass of the rover
This gravitational pull varies from place to place on the planet because the planet may not be perfectly spherical so the distance R varies from place to place and also the density of the planet may not be uniform hence there is variation in weight.
Weight is basically a force that a mass on the surface of the planet experiences.
According to Newton's third law the there is an equal and opposite reaction force on the body (here rover) which is the normal force.
To find the components of the velocity vector, you can use trigonometry. The north component is calculated using the sine function and the west component is calculated using the cosine function. After 2.20 hours, the distance traveled north and west can be found by multiplying the velocity components by the time.
To find the components of the velocity vector in the northerly and westerly directions, we can use trigonometry. The velocity vector is 835 km/h and is traveling in a direction 41.5° west of north. To find the north component, we can use the sine function: North component = velocity * sin(angle). To find the west component, we can use the cosine function: West component = velocity * cos(angle).
After 2.20 hours, we can find the distance traveled north and west by multiplying the velocity components by the time: Distance north = North component * time and Distance west = West component * time.
Let's calculate the values:
#SPJ3
Answer
Explanation:
given
where
now we know
..................(i)
where dx is infinitesimal distance
for x = a and b = 0
after integration we get
we know work done by conservative force will be equals to negative of potential energy
so we get
Answer:
3.4 x 10^-4 T
Explanation:
A = 1.5 x 10^-3 m^2
N = 50
R = 180 ohm
q = 9.3 x 106-5 c
Let B be the magnetic field.
Initially the normal of coil is parallel to the magnetic field so the magnetic flux is maximum and then it is rotated by 90 degree, it means the normal of the coil makes an angle 90 degree with the magnetic field so the flux is zero .
Let e be the induced emf and i be the induced current
e = rate of change of magnetic flux
e = dФ / dt
i / R = B x A / t
i x t / ( A x R) = B
B = q / ( A x R)
B = (9.3 x 10^-5) / (1.5 x 10^-3 x 180) = 3.4 x 10^-4 T
The magnitude of the magnetic field can be calculated using Faraday's Law of electromagnetic induction, by setting up and solving an equation involving the number of turns in the coil, the area of the coil, and the time it takes for the coil to rotate.
To calculate the magnitude of the magnetic field, we can use Faraday's Law of electromagnetic induction, which can be expressed as E = d(N∙Φ )/dt, where E represents the induced EMF, N is the number of turns, and Φ is the magnetic flux (flux equals the product of the magnetic field B, the area A through which it passes and the cosine of the angle between B and A).
Given the information in the problem, we know that E = Q/R ∙ t. Since the coil is rotated through 90 degrees, it goes from being parallel to being perpendicular to the field, resulting in a change in magnetic flux of BNA. We can set up the equation E = d(NBA)/dt = Q/R ∙ t = [(50 turns) ∙ (1.5 × 10-3 m²) ∙ B)/(t)]
We can solve this equation to determine the magnitude of the magnetic field B. Remember, always double-check your calculations to ensure their accuracy.
#SPJ3
La altura vertical máxima alcanzada es de 31,88 m.
Tenemos la siguiente información de la pregunta;
Velocidad inicial = 25 m/s
Velocidad final = 0 m/s (a la altura máxima)
tiempo empleado = 3,5 minutos (el tiempo empleado para subir y bajar es igual).
Usando la ecuación;
v^2 = u^2 - 2gh
Dado que v = 0
u^2 = 2gh
h = tu^2/2g
h = (25)^2/2 *9.8
h = 31,88 m
Obtenga más información sobre las ecuaciones de movimiento: brainly.com/question/8898885
The subject of this question is kinematics. The ball reached a height of 65.1 meters.
To determine the height that the ball reached, we can use the kinematic equation for vertical motion:
Final height = Initial height + Initial vertical velocity * Time + (1/2) * Acceleration * Time^2
In this case, the initial height is the height of the building, the initial vertical velocity is 25 m/s, the time is 7 seconds, and the acceleration is -9.8 m/s^2. Plugging in these values, we get:
Final height = 0 + 25 * 7 + (1/2) * (-9.8) * 7^2 = 0 + 175 - 240.1 = -65.1.
Since the ball is at ground level, the height it reached is the negative of the calculated value, so the correct answer is 65.1 m.
For more such questions on kinematics, click on:
#SPJ6