From Carnot's theorem, for any engine working between these two temperatures:
efficiency <= (1-tc/th) * 100
Given: tc = 300k (from question assuming it is not 5300 as it seems)
For a, th = 900k, efficiency = (1-300/900) = 70%
For b, th = 500k, efficiency = (1-300/500) = 40%
For c, th = 375k, efficiency = (1-300/375) = 20%
Hence in case of a and b, efficiency claimed is lesser than efficiency calculated, which is valid case and in case of c, however efficiency claimed is greater which is invalid.
Answer:
Transmits high-frequency (1 to 5 megahertz) sound pulses into your body using a probe. The sound waves travel into your body and hit a boundary between tissues (e.g. between fluid and soft tissue, soft tissue and bone).
Explanation:
Doppler ultrasound works by measuring sound waves that are reflected from moving objects, such as red blood cells.
Answer:
The guy above is pretty good
Explanation:
I'd go with that answer, give them brainliest
Answer:
At the highest point the velocity is zero, the acceleration is directed downward.
Explanation:
This is a free-fall problem, in the case of something being thrown or dropped, the acceleration is equal to -gravity, so -9.80m/s^2. So, the acceleration is never 0 here.
I attached an image from my lecture today, I find it to be helpful. You can see that because of gravity the acceleration is pulled downwards.
At the highest point the velocity is 0, but it's changing direction and that's why there's still an acceleration there.
Answer:
Billow clouds provide a visible signal to aviation interests of potentially dangerous turbulent sky since they indicate instability in air currents.
Explanation:
Billow clouds are created in regions that are not stable in a meteorological sense. They are frequently present in places with air flows, and have marked vertical shear and weak thermal separation and inversion (colder air stays on top of warmer air). Billow clouds are formed when two air currents of varying speeds meet in the atmosphere. They create a stunning sight that looks like rolling ocean waves. Billow clouds have a very short life span of minutes but they provide a visible signal to aviation interests of potentially dangerous turbulent sky since they indicate instability in air currents, which although may not affect us on the ground but is a concern to aircraft pilots. The turbulence due to the Billow wave is the only logical explanation for the loss of 500 m in altitude of the plane.
To solve this problem we will apply the concepts related to the change in length in proportion to the area and volume. We will define the states of the lengths in their final and initial state and later with the given relationship, we will extrapolate these measures to the area and volume
The initial measures,
(Surface of a Cube)
The final measures
Given,
Now applying the same relation we have that
The relation with volume would be
Volume of the cube change by a factor of 2.83
False
A pressure antinode in a sound wave is indeed a region of high pressure, while a pressure node is a region of low pressure. These definitions hold true for all types of waves.
That's true. In terms of sound waves, a pressure antinode is a region of high pressure, while a pressure node is a region of low pressure. This is true for all types of waves, not only sound waves. In essence, a wave moves through a medium (in case of a sound wave, that medium is typically air) by creating areas of high and low pressure - the high pressure areas are called antinodes, and the low pressure areas are called nodes.
#SPJ2