Answer:
None of the above
It should be position is changing and acceleration is constant.
Explanation:
Since the velocity is changing, this means the object is moving, so the position must also be changing.
Acceleration is the change in velocity in time, if this change of velocity happens at a constant rate, the acceleration must be constant too.
So, for example, if the velocity were to stay the same (not changing), acceleration would be zero, because there wouldn't be a change in time on the velocity.
So in this case the answer sould be position is changing and acceleration is constant. But this isn't in the options so the correct answer is "None of the above"
In straight line motion, if velocity changes at a constant rate, then the position is changing and the acceleration is constant and non-zero. This is defined under the principles of kinematics and implies that as the velocity alters constantly, the object is in motion, hence its position is changing.
In straight line motion, if the velocity of an object is changing at a constant rate, then its position is changing and its acceleration is constant and non-zero. This condition is defined under the laws of physics, more specifically, under the study of kinematics.
The acceleration is constant because you're considering a situation where velocity is changing at a constant rate. In this case, the change in velocity is the acceleration, which is a constant and not zero. This situation is described by the kinematic equations for constant acceleration.
The position is changing because the object is moving. A change in position over time constitutes motion, and in this case, because the velocity (the rate of change of position) is changing, the object's position cannot be constant.
#SPJ3
Answer: 132.02 J
Explanation:
By definition, the kinetic energy is written as follows:
KE = 1/2 m v²
In our question, we know from the question, the following information:
m = 0.1434 Kg
v= 42.91 m/s
Replacing in the equation for KE, we have:
KE = 1/2 . 0.1434 Kg. (42.91)² m²/s² ⇒ KE = 132.02 N. m = 132.02 J
Answer:
Δ = 84 Ω, = (40 ± 8) 10¹ Ω
Explanation:
The formula for parallel equivalent resistance is
1 / = ∑ 1 / Ri
In our case we use a resistance of each
R₁ = 500 ± 50 Ω
R₂ = 2000 ± 5%
This percentage equals
0.05 = ΔR₂ / R₂
ΔR₂ = 0.05 R₂
ΔR₂ = 0.05 2000 = 100 Ω
We write the resistance
R₂ = 2000 ± 100 Ω
We apply the initial formula
1 / = 1 / R₁ + 1 / R₂
1 / = 1/500 + 1/2000 = 0.0025
= 400 Ω
Let's look for the error (uncertainly) of Re
= R₁R₂ / (R₁ + R₂)
R’= R₁ + R₂
= R₁R₂ / R’
Let's look for the uncertainty of this equation
Δ / = ΔR₁ / R₁ + ΔR₂ / R₂ + ΔR’/ R’
The uncertainty of a sum is
ΔR’= ΔR₁ + ΔR₂
We substitute the values
Δ / 400 = 50/500 + 100/2000 + (50 +100) / (500 + 2000)
Δ / 400 = 0.1 + 0.05 + 0.06
Δ = 0.21 400
Δ = 84 Ω
Let's write the resistance value with the correct significant figures
= (40 ± 8) 10¹ Ω
48 degrees
57 degrees
61 degrees
Answer:
61 degrees, I just did the test.
Explanation:
Answer: 61 degrees
Explanation:
I just did the question and got it right
B) All protons align opposite to the field.
C) Some protons align with the field and some align opposite to it.
D) All protons assume a random orientation.
On account of external magnetic field, the protons will align with the magnetic field. Hence, option (a) is correct.
The given problem is based on the concept of magnetic field. The region where the magnetic force is experienced is known as magnetic field. Generally, the protons are the charged entities carrying the positive polarity and are one of the major constituents of modern atomic structure.
Thus, we can conclude that on account of external magnetic field, the protons will align with the field.
Learn more about the magnetic field here:
Answer:
Some protons align with the field and some align opposite to it.
Explanation:
Majority align to the field because these protons tend to act like small magnets under the effect of this external field
Answer:
The linear velocity is represented by the following expression:
Explanation:
From Rotation Physics we know that linear velocity of a point moving with uniform circular motion is:
(Eq. 1)
Where:
- Radius of rotation of the particle, measured in meters.
- Angular velocity, measured in radians per second.
- Linear velocity of the point, measured in meters per second.
But we know that angular velocity is also equal to:
(Eq. 2)
Where:
- Angular displacement, measured in radians.
- Time, measured in seconds.
By applying (Eq. 2) in (Eq. 1) we get that:
(Eq. 3)
From Geometry we must remember that circular arc (), measured in meters, is represented by:
The linear velocity is represented by the following expression: