In straight line motion, if the velocity of an object is changing at a constant rate, then its position is _________ and its acceleration is___________: O changing: zero O changing; changing O constant and non-zero; constant and non-zero O None of the above

Answers

Answer 1
Answer:

Answer:

None of the above

It should be position is changing and acceleration is constant.

Explanation:

Since the velocity is changing, this means the object is moving, so the position must also be changing.

Acceleration is the change in velocity in time, if this change of velocity happens at a constant rate, the acceleration must be constant too.

So, for example, if the velocity were to stay the same (not changing), acceleration would be zero, because there wouldn't be a change in time on the velocity.

So in this case the answer sould be position is changing and acceleration is constant. But this isn't in the options so the correct answer is "None of the above"

Answer 2
Answer:

Final answer:

In straight line motion, if velocity changes at a constant rate, then the position is changing and the acceleration is constant and non-zero. This is defined under the principles of kinematics and implies that as the velocity alters constantly, the object is in motion, hence its position is changing.

Explanation:

In straight line motion, if the velocity of an object is changing at a constant rate, then its position is changing and its acceleration is constant and non-zero. This condition is defined under the laws of physics, more specifically, under the study of kinematics.

The acceleration is constant because you're considering a situation where velocity is changing at a constant rate. In this case, the change in velocity is the acceleration, which is a constant and not zero. This situation is described by the kinematic equations for constant acceleration.

The position is changing because the object is moving. A change in position over time constitutes motion, and in this case, because the velocity (the rate of change of position) is changing, the object's position cannot be constant.

Learn more about Straight Line Motion here:

brainly.com/question/34648048

#SPJ3


Related Questions

Consider a proton travelling due west at a velocity of 5×10^5m/s. Assuming that the rth magnetic field has a strength of 5x10^-5Tand is directed due south calculate li) the magnitude of the force on the proton (q= 1.6x10^-9C)​
According to the Heisenberg uncertainty principle, quantum mechanics differs from classical mechanics in that: Select the correct answer below: Quantum mechanics involves particles that do not move. It is impossible to calculate with accuracy both the position and momentum of particles in classical mechanics. The measurement of an observable quantity in the quantum domain inherently changes the value of that quantity. All of the above
Which of the following is not a risk associated with using legal drugs without medical supervision
Using energy considerations, calculate the average force (in N) a 62.0 kg sprinter exerts backward on the track to accelerate from 2.00 to 6.00 m/s in a distance of 25.0 m, if he encounters a headwind that exerts an average force of 30.0 N against him.
А pressure gauge with a measurement range of 0-10 bar has a quoted inaccuracy of £1.0% f.s. (+1% of full-scale reading). (a) What is the maximum measurement error expected for this instrument? (b) What is the likely measurement error expressed as a percentage of the or reading if this pressure gauge is measuring a pressure of 1 bar?​

Professional baseball pitchers deliver pitches that can reach the blazing speed of 100 mph (miles per hour). A local team has drafted an up-and-coming, left-handed pitcher who can consistently pitch at 42.91 m/s (96.00 mph) . Assuming a pitched ball has a mass of 0.1434 kg and has this speed just before a batter makes contact with it, how much kinetic energy does the ball have?

Answers

Answer: 132.02 J

Explanation:

By definition, the kinetic energy is written as follows:

KE = 1/2 m v²

In our question, we know from the question, the following information:

m = 0.1434 Kg

v= 42.91 m/s

Replacing in the equation for KE, we have:

KE = 1/2 . 0.1434 Kg. (42.91)² m²/s² ⇒ KE = 132.02 N. m = 132.02 J

Two resistors are to be combined in parallelto form an equivalent resistance of 400Ω. The resistors are takenfrom available stock on hand as acquired over the years. Readily available are two common resistorsrated at 500±50 Ωand two common resistors rated at 2000 Ω±5%. What isthe uncertainty in an equivalent 400 Ωresistance?(Hint: the equivalent resistance connected in parallel can be obtained by 1212TRRRRR=+)

Answers

Answer:

ΔR_(e) = 84   Ω,     R_(e) = (40 ± 8) 10¹   Ω

Explanation:

The formula for parallel equivalent resistance is

          1 / R_(e) = ∑ 1 / Ri

In our case we use a resistance of each

           R₁ = 500 ± 50  Ω

          R₂ = 2000 ± 5%

This percentage equals

        0.05 = ΔR₂ / R₂

        ΔR₂ = 0.05 R₂

        ΔR₂ = 0.05 2000 = 100   Ω

We write the resistance

        R₂ = 2000 ± 100    Ω

We apply the initial formula

        1 / R_(e) = 1 / R₁ + 1 / R₂

        1 / R_(e) = 1/500 + 1/2000 = 0.0025

        R_(e)  = 400    Ω

Let's look for the error  (uncertainly) of Re

      R_(e) = R₁R₂ / (R₁ + R₂)

       R’= R₁ + R₂

       R_(e) = R₁R₂ / R’

Let's look for the uncertainty of this equation

      ΔR_(e) / R_(e) = ΔR₁ / R₁ + ΔR₂ / R₂ + ΔR’/ R’

The uncertainty of a sum is

      ΔR’= ΔR₁ + ΔR₂

We substitute the values

     ΔR_(e) / 400 = 50/500 + 100/2000 + (50 +100) / (500 + 2000)

     ΔR_(e) / 400 = 0.1 + 0.05 + 0.06

     ΔR_(e) = 0.21 400

     ΔR_(e) = 84   Ω

Let's write the resistance value with the correct significant figures

    R_(e) = (40 ± 8) 10¹   Ω

What is the critical angle for light traveling from crown glass (n = 1.52) into water (n = 1.33)?42 degrees
48 degrees
57 degrees
61 degrees

Answers

Answer:

61 degrees, I just did the test.

Explanation:

Answer: 61 degrees

Explanation:

I just did the question and got it right

A typical sugar cube has an edge length of 1 cm. If you had a cubical box that contained a mole of sugar cubes, what would its edge length be? (One mole = 6.02 ✕ 1023 units.)

Answers

Since volume of each cube is 1 cm^3 
Then we can get the 
volume of 1 mole of cubes, which is 1 * 6.02 * 10^23 cm^3
The edge edge = v^1/3
And the new adge that  we are looking for: new edge = (6.02*10^23)^1/3== 1.8191 * 46415888.336 = 84435142.472
So, the final soution for the edge length of cube  is 844km.

Do hope it helps! 
Regards.

When an external magnetic field is applied, what happens to the protons in a sample?A) All protons align with the field.
B) All protons align opposite to the field.
C) Some protons align with the field and some align opposite to it.
D) All protons assume a random orientation.

Answers

On account of external magnetic field, the protons will align with the magnetic field. Hence, option (a) is correct.

The given problem is based on the concept of magnetic field. The region where the magnetic force is experienced is known as magnetic field. Generally, the protons are the charged entities carrying the positive polarity and are one of the major constituents of modern atomic structure.

  • The origin of magnetic field occurs due to charged particles present in a specific space. And the magnetic field is due to the flowing of liquid metal in the outer core of the planet generates electric currents.
  • In the condition when an external field is applied, the majority of protons align to the field because these protons tend to act like small magnets under the effect of this external field.

Thus, we can conclude that on account of external magnetic field, the protons will align with the field.

Learn more about the magnetic field here:

brainly.com/question/14848188

Answer:

Some protons align with the field and some align opposite to it.

Explanation:

Majority align to the field because these protons tend to act like small magnets under the effect of this external field

Find the linear velocity of a point moving with uniform circular motion, if the point covers a distance s in the given amount of time t. s

Answers

Answer:

The linear velocity is represented by the following expression: v = (s)/(t)

Explanation:

From Rotation Physics we know that linear velocity of a point moving with uniform circular motion is:

v = r\cdot \omega(Eq. 1)

Where:

r - Radius of rotation of the particle, measured in meters.

\omega - Angular velocity, measured in radians per second.

v - Linear velocity of the point, measured in meters per second.

But we know that angular velocity is also equal to:

\omega = (\theta)/(t)(Eq. 2)

Where:

\theta - Angular displacement, measured in radians.

t - Time, measured in seconds.

By applying (Eq. 2) in (Eq. 1) we get that:

v = (r\cdot \theta)/(t)(Eq. 3)

From Geometry we must remember that circular arc (s), measured in meters, is represented by:

s = r\cdot \theta

v = (s)/(t)

The linear velocity is represented by the following expression: v = (s)/(t)