Answer:
69.68 N
Explanation:
Work done is equal to change in kinetic energy
W = ΔK = Kf - Ki =
W =
where m = mass of the sprinter
vf = final velocity
vi = initial velocity
W = workdone
kf = final kinetic energy
ki = initial kinetic energy
d = distance traveled
Ftotal = total force
vf = 8m/s
vi= 2m/s
d = 25m
m = 60kg
inserting parameters to get:
W = ΔK = Kf - Ki =
= 39.7
we know that the force the sprinter exerted F sprinter, the force of the headwind Fwind = 30N
Answer:
Force exerted by sprinter = 69.68 N
Explanation:
From work energy theorem, we know that, work done is equal to change in kinetic energy.
Thus,
W = ΔK = Kf - Ki = (1/2)m•(v_f)² - (1/2)m•(v_i)² - - - - eq(1)
Now,
Work done is also;
W = Force x Distance = F•d - - - (2)
From the question, we are given ;
v_f = 6 m/s
v_i = 2 m/s
d = 25m
m = 62 kg
Equating equation 1 and 2,we get;
(1/2)m•(v_f)² - (1/2)m•(v_i)² = F•d
Plugging in the relevant values to obtain ;
(1/2)(62)[(6)² - (2)²] = F x 25
31(36 - 4) = 25F
992 = 25F
F = 39.68 N
The force the sprinter exerts backward on the track will be the sum of this force and the headwind force.
Thus,
Force of sprinter = 39.68 + 30 = 69.68N
-Calculate the net work Wnet in J done on the bucket of water by the two forces F1 and Fg.
To calculate the work done by gravity on the bucket of water as it is lifted up the well, multiply the weight of the bucket by the lifting distance. The net work done on the bucket by the force applied by the farmer and gravity is the sum of the work done by both forces. The net work is represented by the equation Wnet = W1 + Wg.
To calculate how much work gravity does on the bucket filled with water as the farmer lifts it up the well, we need to multiply the force of gravity (weight) by the vertical distance the bucket is lifted. The equation for work is W = Fd, where W is the work done, F is the force, and d is the distance. In this case, the force of gravity is the weight of the bucket, which can be calculated by multiplying the mass by the acceleration due to gravity (9.8 m/s^2).
So, the work done by gravity (Wg) on the bucket is Wg = Fg * d = (m * g) * d = (3.9 kg * 9.8 m/s^2) * d = 38.22 d Joules.
To calculate the net work done on the bucket by the two forces, we can use the equation Wnet = W1 + Wg, where W1 is the work done by force F1 and Wg is the work done by gravity. Since force F1 and the displacement (lifting distance) are both vertical, the work done by F1 is given by W1 = F1 * d.
Therefore, the net work done on the bucket by forces F1 and gravity is Wnet = F1 * d + Fg * d = (57.5 N) * d + (3.9 kg * 9.8 m/s^2) * d = (57.5 N + 38.22 d) Joules.
#SPJ12
Answer:
Time taken for 1 swing = 3.81 second
Explanation:
Given:
Time taken for 1 swing = 2.20 Sec
Find:
Time taken for 1 swing , when triple the length(T2)
Computation:
Time taken for 1 swing = 2π[√l/g]
2.20 = 2π[√l/g].......Eq1
Time taken for 1 swing , when triple the length (3L)
Time taken for 1 swing = 2π[√3l/g].......Eq2
Squaring and dividing the eq(1) by (2)
4.84 / T2² = 1 / 3
T2 = 3.81 second
Time taken for 1 swing = 3.81 second
Answer:
The inductance is
Explanation:
From the question we are told that
The number of turns is
The diameter is
The length is
The radius is evaluated as
substituting values
The inductance of the Tarik's solenoid is mathematically represented as
Here is the permeability of free space with value
A is the area which is mathematically evaluated as
substituting values
substituting values into formula for L
The distance between the adjacent bright fringes is : 1.7 * 10⁻³ M
Given data :
separation between slits ( d ) = 1.5 x 10⁻³ m
wavelength of light ( λ ) = 514 * 10⁻⁹ m
Distance from narrow slit ( D ) = 5.0 m
we apply the formula below
w = D * λ / d ---- ( 1 )
where : w = distance between adjacent bright fringes
Back to equation ( 1 )
w = ( 5 * 514 * 10⁻⁹ ) / 1.5 x 10⁻³
= 1.7 * 10⁻³ M
Hence we can conclude that The distance between the adjacent bright fringes is : 1.7 * 10⁻³ M
Learn more about bright fringes calculations : brainly.com/question/4449144
Answer:
m
Explanation:
d = separation between the two narrow slits = 1.5 mm = 1.5 x 10⁻³ m
λ = wavelength of the light = 514 nm = 514 x 10⁻⁹ m
D = Distance of the screen from the narrow slits = 5.0 m
w = Distance between the adjacent bright fringes on the screen
Distance between the adjacent bright fringes on the screen is given as
m
Answer:
b) 16 cm
Magnification, m = v/u
3 = v/u
⇒ v = 3u
Lens formula : 1/v – 1/u = 1/f
1/3u = 1/u = 1/12
-2/3u = 1/12
⇒ u = -8 cm
V = 3 × (-8) = -24
Distance between object and image = u – v = -8 – (-24) = -8 + 24 = 16 cm
Explanation: