An electron experiences a magnetic force of magnitude 4.60 x 10^-15 N when moving at an angle of 60.0° with respect to a magnetic field of magnitude 3.50 x 10^-3 T. Find the speed of the electron.

Answers

Answer 1
Answer:

Answer:

9.49 × 10⁶ m/s

Explanation:

Data provided in the question:

Magnitude of Magnetic force, F = 4.60 × 10⁻¹⁵ N

Angle, θ = 60°

Magnitude of magnetic field, B = 3.50 × 10⁻³ T

Now,

we know

F = qVBsin(θ)

here ,

q is the charge of electron = 1.6 × 10⁻¹⁹ V

V is the speed of electron

Therefore,

4.60 × 10⁻¹⁵ = ( 1.6 × 10⁻¹⁹ ) × V × ( 3.50 × 10⁻³ ) × sin(60°)

or

V = 9.49 × 10⁶ m/s

Answer 2
Answer:

Answer:

9.49*10^6(m/s)

Explanation:


Related Questions

A string that passes over a pulley has a 0.341 kg mass attached to one end and a 0.625 kg mass attached to the other end. The pulley, which is a disk of radius 9.00 cm , has friction in its axle.What is the magnitude of the frictional torque that must be exerted by the axle if the system is to be in static equilibrium? (Answer should be in N m)
A sound wave travels with a velocity of 330 m/s and has a frequency of 500 Hz. What is itswavelength?
What is a light year​
What was the main idea of Malthus theory of population
The mass of the Sun is 2 × 1030 kg, the mass of the Earth is 6 × 1024 kg, and their center-to-center distance is 1.5 × 1011 m. Suppose that at some instant the Sun's momentum is zero (it's at rest). Ignoring all effects but that of the Earth, what will the Sun's speed be after 3 days? (Very small changes in the velocity of a star can be detected using the "Doppler" effect, a change in the frequency of the starlight, which has made it possible to identify the presence of planets in orbit around a star.)

A radioactive nucleus has a half-life of 5*108 years. Assuming that a sample of rock (say, in an asteroid) solidified right after the solar system formed, approximately what fraction of the radioactive element should be left in the rock today? The age of the solar system is 4.5*109 years. (No calculator is necessary, but if it helps use it.)

Answers

Answer:

0.002

Explanation:

The half-life of the radioactive nucleus is related to its quantity, by the following equation:

N_(t) = N_(0)2^{-t/t_(1/2)}

Where:

N(t): is the quantity of the radioactive nucleus at time t

N₀: is the  initial quantity of the radioactive nucleus

t: is the time = 4.5x10⁹ years

t(1/2): is the half-life of the radioactive nucleus = 5x10⁸ years

(N_(t))/(N_(0)) = 2^{-4.5 \cdot 10^(9) y/5 \cdot 10^(8) y} = 2 \cdot 10^(-3)

Therefore, the fraction of the radioactive element in the rock today is 0.002.

I hope it helps you!  

A horizontal cylindrical tank 8.00 ft in diameter is half full of oil (60.0 Ib/ft3). Find the force on one end

Answers

Answer:

Assuming h as the height of the cylindrical tank

F=480\pi h \,g\,\, (lb)/(ft)

Explanation:

Assuming that the height is h we can find the volume of the cylindrical tank, then:

V=\pi*r^2*h

The diameter is 8.00 ft then r=4.00 ft the total volume of the tank is:

V=\pi (4.00 ft)^2 h=16\pi h\,\, ft^2

But the tank is half full of oil, then we need half of the volume. For that reason the volume of oil is:

V_(oil)=(16\pi h)/(2)ft^2=8\pi h \,\,ft^2

We know the density of the oil \rho=60.0\,lb/ft^3, with this we can fing the mass of oil that we have because:

\rho=(m)/(V) then m=\rho V

Then the mass of oil that we have is:

m=(60.0(lb)/(ft^3))(8\pi h\,\,ft^2)

m=480\pi h (lb)/(ft)

Note that with the value of h we have the mass in correct units.

Finally to find the force we now that F=mg then we just need to multiply the mass by the gravity.

F=480\pi h \,g\,\, (lb)/(ft)

A plastic ball in a liquid is acted upon by its weight and by a buoyant force. The weight of the ball is 4 N. The buoyant force has a magnitude of 5 N and acts vertically upward. When the ball is released from rest, what is it's acceleration and direction? [2 pts] for a Free Body Diagram correctly labeled.​

Answers

Answer:

The acceleration is 2.448 meters per square second and is vertically upward.

Explanation:

The Free Body Diagram of the plastic ball in the liquid is presented in the image attached below. By Second Newton's Law, we know that forces acting on the plastic ball is:

\Sigma F = F - m\cdot g = m\cdot a(1)

Where:

F - Buoyant force, measured in newtons.

m - Mass of the plastic ball, measured in kilograms.

g - Gravitational acceleration, measured in meters per square second.

a - Net acceleration, measured in meters per square second.

If we know that F = 5\,N, m = 0.408\,kg and g = 9.807\,(m)/(s^(2)), then the net acceleration of the plastic ball is:

a = (F)/(m) - g

a= 2.448\,(m)/(s^(2))

The acceleration is 2.448 meters per square second and is vertically upward.

A particle (q = 5.0 nC, m = 3.0 μg) moves in a region where the magnetic field has components Bx = 2.0 mT, By = 3.0 mT, and Bz = −4.0 mT. At an instant when the speed of the particle is 5.0 km/s and the direction of its velocity is 120° relative to the magnetic field, what is the magnitude of the acceleration of the particle in m/s2?

Answers

The acceleration of the particle is 38.87 kg.

Net magnetic field

The net magnetic field is calculated as follows;

B_(net) = √(B_x^2 + B_y^2 + B_z^2) \n\nB_(net) = √(2^2 + 3^2 + 4^2) = 5.385 \ mT

Magnetic force on the charge

The magnetic force on the charge is calculated as follows;

F = qvB * sin(\theta)\n\nF = 5* 10^(-9) * 5* 10^3 * 5.385 * 10^(-3) * sin(120)\n\nF = 1.166 * 10^(-7) \ N

Acceleration of the particle

The acceleration of the particle is calculated as follows;

a = (F)/(m) \n\na = (1.166 * 10^(-7))/(3 * 10^(-9)) \n\na = 38.87 \ kg

Learn more about magnetic force here: brainly.com/question/13277365

Explanation:

It is given that,

Charge on the particle, q=5\ nC=5* 10^(-9)\ C

Mass of the particle, m=3\ \mu g=3* 10^(-6)\ g=3* 10^(-9)\ kg

Magnetic field component, B_x=2\ mT,B_y=3\ mT,B_z=-4\ mT

Net magnetic field, B=√(2^2+3^2+4^2)=5.38\ mT=0.00538\ T

Speed of the particle, v = 5 km/s = 5000 m/s

Angle between velocity and magnetic field, \theta=120

Magnetic force is given by :

F=qvB\ sin\theta

F=5* 10^(-9)* 5000\ m/s* 0.00538* sin(120)

F=1.16* 10^(-7)\ N

Acceleration of the particle is given by, a=(F)/(m)

a=(1.16* 10^(-7)\ N)/(3* 10^(-9)\ kg)

a=38.6\ m/s^2

So, the acceleration of the particle is 38.6 m/s². Hence, this is the required solution.

A small space probe of mass 170 kg is launched from a spacecraft near Mars. It travels toward the surface of Mars, where it will eventually land. At a time 22.9 seconds after it is launched, the probe is at location <5600, 7200, 0> m, and at this same instant its momentum is <51000, -7000, 0> kg·m/s. At this instant, the net force on the probe due to the gravitational pull of Mars plus the air resistance acting on the probe is <-4000, -780, 0> N.Assuming that the net force on the probe is approximately constant during this time interval, what is the change of the momentum of the probe in the time interval from 22.6 seconds after the probe is launched to 22.9 seconds after the launch?

Answers

Answer:

The change  in momentum is  \Delta p = <-1200 , -234  , 0>  kg \cdot m/s      

Explanation:

From the question we are told that  

       The mass of the probe is  m = 170 kg

       The location of the prob at time t = 22.9 s is  A  = <5600, 7200,0>

       The  momentum at time  t = 22.9 s is  p = < 51000, -7000, 0> kg m/s

        The net force on the probe is  F = <-4000 , -780 , 0> N

Generally the change in momentum is mathematically represented as

              \Delta p = F * \Delta t

The initial time is   22.6 s

 The final time  is  22.9 s

             Substituting values  

           \Delta p = <-4000 , -780 , 0> * (22.9 - 22.6)

            \Delta p = <-4000 , -780 , 0> * (0.3)  

              \Delta p = <-1200 , -234  , 0>  kg \cdot m/s        

 

What is the force required to accelerate 1 kilogram of mass at 1 meter per second per second.1 Newton

1 pound

1 kilometer

1 gram

Answers

Answer:

it's answer is 1 newton

Other Questions
Classical mechanics is an extremely well tested model. Hundreds of years worth of experiments, as well as most feats of engineering, have verified its validity. If special relativity gave very different predictions than classical physics in everyday situations, it would be directly contradicted by this mountain of evidence. In this problem, you will see how some of the usual laws of classical mechanics can be obtained from special relativity by simply assuming that the speeds involved are small compared to the speed of light.Two of the most surprising results of special relativity are time dilation and length contraction, namely, that measured intervals in time and space are not absolute quantities but instead appear differently to different observers. The equations for time dilation and length contraction can be written t=?t0 and l=l0/?, where?=11?u2c2?.Part AFind the first two terms of the binomial expansion for ?.Express your answer in terms of u and c.Hints? = 1+12(uc)2 … SubmitMy AnswersGive UpCorrectYou can see that ??1 if u?c, as is the case in most situations. If you set ?=1 in the equations for time dilation and length contraction you recover the equations of classical physics, which state essentially that there is no time dilation or length contraction. Therefore, we don't see any appreciable length contraction or time dilation in everyday life.Part BConsider a case involving a speed that is fast compared to those encountered in our everyday life: a spy plane moving at 1500m/s. Find the deviation from classical physics (??1) that relativity predicts at this speed. Use only the first two terms of the binomial expansion, as your calculator may not be able to handle the necessary number of digits otherwise.Express your answer to four significant figures.??1 = 1.250×10?11SubmitMy AnswersGive UpCorrectIf you lived for 70 years in such a spy plane moving at 1500m/s, this would amount to about 28ms of cumulative time difference between you and people who lived at rest relative to the earth when you finally landed. Thus, it is not surprising that relativistic effects are not observed in everyday life, or even at the fringes of everyday life. By using atomic clocks, which can measure time accurately to one part in 1013 or better, the time dilation at the normal speed for an airliner has been verified.Part CNow, consider the relativistic velocity addition formula:speed=v+u1+vuc2.If v=u=0.01c=1% of c, what is the relativistic sum of the two speeds?Express your answer as a percentage of the speed of light to five significant figures.